Chemistry Reference
In-Depth Information
[21] Wenlock, M. C., Austin, R. P., Barton, P., Davis, A. M., and Leeson, P. D. (2003). A compar-
ison of physiochemical property profiles of development and marketed oral drugs. Journal of
Medicinal Chemistry 46 , 1250-1256.
[22] Shelat, A. A., and Guy, R. K. (2007). The interdependence between screening methods and
screening libraries. Current Opinion in Chemical Biology 11 , 244-251.
[23] Robertson, J. G.
(2005). Mechanistic basis of enzyme-targeted drugs. Biochemistry
44 , 5561-5571.
[24] Robertson, J. G. (2007). Enzymes as a special class of therapeutic target: clinical drugs and
modes of action. Current Opinion in Structural Biology 17 , 674-679.
[25] Drews, J. (2000). Drug discovery: a historical perspective. Science 287 , 1960-1964.
[26] Hajduk, P. J., Huth, J. R., and Fesik, S. W. (2005). Druggability indices for protein targets
derived from NMR-based screening data. Journal of Medicinal Chemistry 48 , 2518-2525.
[27] Hajduk, P. J., Huth, J. R., and Tse, C. (2005). Predicting protein druggability. Drug Discovery
Today: Targets 10 , 1675-1682.
[28] Cheng,A. C., Coleman, R. G., Smyth, K. T., Cao, Q., Soulard, P., Caffrey, D. R., Salzberg,A. C.,
and Huang, E. S. (2007). Structure-based maximal affinity model predicts small-molecule
druggability. Nature Biotechnology 25 , 71-75.
[29] Oslob, J. D., and Erlanson, D. A. (2004). Tethering in early target assessment. Drug Discovery
Today: Targets 3 , 143-150.
[30] Wunberg, T., Hendrix, M., Hillisch, A., Lobell, M., Meier, H., Schmeck, C., Wild, H., and
Hinzen, B. (2006). Improving the hit-to-lead process: data-driven assessment of drug-like and
lead-like screening Hits. Drug Discovery Today 11 , 175-180.
[31] Egner, U., Kratzschmar, J., Kreft, B., Pohlenz, H. D., and Schneider, M. (2005). The target
discovery process. ChemBioChem 6 , 468-479.
[32] Becattini, B., and Pellechia, M. (2006). SAR by ILOEs: an NMR-based approach to reverse
chemical genetics. Chemistry: a European Journal 12 , 2658-2662.
[33] Spring, D. R. (2005). Chemical genetics to chemical genomics: small molecules offer big
insights. Chemical Society Reviews 34 , 472-482.
[34] Allen, J. J., and Shokat, K. M. (2006). Chemical genomics: dialed in transcriptional network
control with non-steroidal glucocorticoid receptor modulators. ACS Chemical Biology 1 ,
139-140.
[35] Kwon, H. J. (2003). Chemical genomics-based target identification and validation of
anti-angiogenic agents. Current Medicinal Chemistry 10 , 717-736.
[36] Kwon, H. J. (2006). Discovery of new small molecules and targets towards angiogenesis via
chemical genomics approach. Current Drug Targets 7 , 397-405.
[37] Willson, T. (2003). Chemical genomics of orphan nuclear receptors. Ernst Schering Research
Foundation Workshop , 29-42.
[38] Caron, P. R. (2005). Introduction to chemical genomics. Methods in Molecular Biology
310 , 3-10.
[39] Zartler, E. R., and Shapiro, M. J. (2006). Protein NMR-based screening in drug discovery.
Current Pharmaceutical Design 12 , 3963-3972.
[40] Zartler, E. R., Yan, J., Mo, H., Kline, A. D., and Shapiro, M. J. (2003). 1D NMR methods in
ligand-receptor interactions. Current Topics in Medicinal Chemistry 3 , 25-37.
[41] Card, G. L., Blasdel, L., England, B. P., Zhang, C., Suzuki, Y., Gillette, S., Fong, D., Ibrahim,
P. N., Artis, D. R., Bollag, G., Milburn, M. V., Kim, S.-H., Schlessinger, J., and Zhang, K.
Y. J. (2005). A family of phosphodiesterase inhibitors discovered by cocrystallography and
scaffold-based drug design. Nature Biotechnology 23 , 201-207.
[42] Jhoti, H. (2005). A new school for screening. Nature Biotechnology 23 , 184-6.
[43] Sanders, W. J., Nienaber, V., Lerner, C. G., McCall, J. O., Merrick, S. M., Swanson, S. J.,
Harlan, J. E., Stoll, V. S., Stamper, G. F., Betz, S. F., Condroski, K. R., Meadows, R. P.,
Search WWH ::




Custom Search