Chemistry Reference
In-Depth Information
[4] Hajduk, P. J. and Greer, J., A decade of fragment-based drug design: strategic advances and
lessons learned. Nat Rev Drug Discov , 2007, 6 , 211-219.
[5] Zartler, E. R. and Shapiro, M. J., Fragonomics: fragment-based drug discovery. Curr Opin
Chem Biol , 2005, 9 , 366-370.
[6] Lepre, C. A., et al ., Theory and applications of NMR-based screening in pharmaceutical
research. Chem Rev , 2004, 104 , 3641-3676.
[7] Hann, M. M., et al ., Molecular complexity and its impact on the probability of finding leads
for drug discovery. J Chem Inf Comput Sci , 2001, 41 , 856-864.
[8] Lipinski, C. and Hopkins, A., Navigating chemical space for biology and medicine. Nature ,
2004, 432 , 855-861.
[9] Andrews, P. R., et al ., Functional group contributions to drug-receptor interactions. J Med
Chem , 1984, 27 , 1648-1657.
[10] Hopkins, A. L., et al ., Ligand efficiency: a useful metric for lead selection. Drug Discov Today ,
2004, 9 , 430-431.
[11] Lipinski, C. A., et al ., Experimental and computational approaches to estimate solubility and
permeability in drug discovery and development settings. Adv Drug Deliv Rev , 1997, 46 ,
3-26.
[12] Kuntz, I. D., et al ., The maximal affinity of ligands. Proc Natl Acad Sci USA , 1999, 96 ,
9997-10002.
[13] Abad-Zapatero, C. and Metz, J. T., Ligand efficiency indices as guideposts for drug discovery.
Drug Discov Today , 2005, 10 , 464-469.
[14] Dalvit, C., et al ., NMR-based quality control approach for the identification of false posit-
ives and false negatives in high throughput screening. Curr Drug Discov Technol , 2006, 3 ,
115-124.
[15] Teague, S. J., et al ., The design of leadlike combinatorial libraries. Angew Chem Int Ed , 1999,
38 , 3743-3748.
[16] Wenlock, M. C., et al ., A comparison of physiochemical property profiles of development and
marketed oral drugs. J Med Chem , 2003, 46 , 1250-1256.
[17] Tjernberg, A., et al ., Mechanism of action of pyridazine analogues on protein tyrosine
phosphatase 1B (PTP1B). Bioorg Med Chem Lett , 2004, 14 , 891-895.
[18] Lundqvist, T., The devil is still in the details - driving early drug discovery forward with
biophysical experimental methods. Curr Opin Drug Discov Devel , 2005, 8 , 513-519.
[19] Dalvit, C., et al ., A general NMR method for rapid, efficient and reliable biochemical
screening. J Am Chem Soc , 2003, 125 , 14620-14625.
[20] Hajduk, P. J., et al ., Novel inhibitors of Erm methyltransferases from NMR and parallel
synthesis. J Med Chem , 1999, 42 , 3852-3859.
[21] Boehm, H. J., et al ., Novel inhibitors of DNAgyrase: 3D structure based biased needle screen-
ing, hit validation by biophysical methods and 3D guided optimization. Apromising alternative
to random screening. J Med Chem , 2000, 43 , 2664-2674.
[22] Hajduk, P. J., et al ., Identification of novel inhibitors of urokinase via NMR-based screening.
J Med Chem , 2000, 43 , 3862-3866.
[23] Erlanson, D. A., et al ., Site-directed ligand discovery. Proc Natl Acad Sci USA , 2000, 97 ,
9367-9372.
[24] van Dongen, M. J., et al ., Structure-based screening as applied to human FABP 4 , a highly
efficient alternative to HTS for hit generation. J Am Chem Soc , 2002, 124 , 11874-11880.
[25] Wendt, M. D., et al ., Identification of novel binding interactions in the development of potent,
selective 2-naphthamidine inhibitors of urokinase. Synthesis, structural analysis and SAR of
N -phenyl amide 6-substitution. J Med Chem , 2004, 47 , 303-324.
[26] Gill, A. L., et al ., Identification of novel p38alpha MAP kinase inhibitors using fragment-based
lead generation. J Med Chem , 2005, 48 , 414-426.
Search WWH ::




Custom Search