Environmental Engineering Reference
In-Depth Information
[12] Kane, W.F., Beck, T.J., Hughes, J.: Applications of time domain reflectometry to land-
slide and slope monitoring. In: Proceedings of the 2nd International Symposium and
Workshop on Time Domain Reflectometry for Innovative Geotechnical Applications,
pp. 305-314 (2001)
[13] Kumar, P.M., Malathi, M.: Dielectric relaxation studies of nylon-11 with phenol deriva-
tives in non-polar solvents using time domain reflectometry. J. Mol. Liq. 145(1), 5-7
(2009)
[14] McClanahan, A., Kharkovsky, S., Maxon, A.R., Zoughi, R., Palmer, D.D.: Depth eval-
uation of shallow surface cracks in metals using rectangular waveguides at millimeter-
wave frequencies. IEEE Trans. Instrum. Meas. 59(6), 1693-1704 (2010)
[15] Mehta, P., Chand, K., Narayanswamy, D., Beetner, D.G., Zoughi, R., Stoecker, W.V.:
Microwave reflectometry as a novel diagnostic tool for detection of skin cancers. IEEE
Trans. Instrum. Meas. 55(4), 1309-1316 (2006)
[16] Miura, N., Yagihara, S., Mashimo, S.: Microwave dielectric properties of solid and liq-
uid foods investigated by time-domain reflectometry. J. Food Sci. 68(4), 1396-1403
(2003)
[17] Mohamed, A.M.O., Said, R.A.: Detection of organic pollutants in sandy soils via TDR
and eigendecomposition. J. Contam. Hydrol. 76(3-4), 235-249 (2005)
[18] Mubarak, K., Boi, K.J.: A simple, robust, and on-site microwave technique for de-
termining water-to-cement ratio (w/c) of fresh portland cement-based materials. IEEE
Trans. Instrum. Meas. 50(5), 1255-1263 (2001)
[19] Nemarich, C.P.: Time domain reflectometry liquid levels sensors. IEEE Instr. Meas.
Mag. 4(4), 40-44 (2001)
[20] Neus, C., Boets, P., Biesen, L.V., Moelans, R., de Vyvere, G.V.: Fault detection on
critical instrumentation loops of gas turbines with reflectometry. IEEE Trans. Instrum.
Meas. 58(9), 2938-2944 (2009)
[21] O'Connor, K., Dowding, C.H.: Geomeasurements by pulsing TDR cables and probes.
CRC Press, Boca Raton (1999)
[22] Pawar, V.P., Patil, A.R., Mehrotra, S.C.: Temperature-dependent dielectric relaxation
study of chlorobenzene with n-methylformamide from 10 MHz to 20 GHz. J. Mol.
Liq. 121, 88-93 (2005)
[23] Peer, S., Kurtis, K.E., Zoughi, R.: Evaluation of microwave reflection properties of
cyclically soaked mortar based on a semiempirical electromagnetic model. IEEE Trans.
Instrum. Meas. 54(5), 2049-2060 (2005)
[24] Piuzzi, E., Cataldo, A., Catarinucci, L.: Enhanced reflectometry measurements of per-
mittivities and levels in layered petrochemical liquids using an 'in-situ' coaxial probe.
Measurement 42(5), 685-696 (2009)
[25] Popovic, D., McCartney, L., Beasley, C., Lazebnik, M., Okoniewski, M., Hagness, S.C.,
Booske, J.H.: Precision open-ended coaxial probes for in vivo and ex vivo dielectric
spectroscopy of biological tissues at microwave frequencies. IEEE Trans. Microw. The-
ory Tech. 53(5), 1713-1722 (2005)
[26] Previati, M., Bevilacqua, I., Canone, D., Ferraris, S., Haverkamp, R.: Evaluation of soil
water storage efficiency for rainfall harvesting on hillslope micro-basins built using time
domain reflectometry measurements. Agric. Water Manag. 97(3), 449-456 (2010)
[27] Scheuermann, A., Huebner, C.: On the feasibility of pressure profile measurements with
time-domain reflectometry. IEEE Trans. Instrum. Meas. 58(2), 467-474 (2009)
[28] Scheuermann, A., Hubner, C., Wienbroer, H., Rebstock, D., Huber, G.: Fast time do-
main reflectometry (TDR) measurement approach for investigating the liquefaction of
soils. Meas. Sci. Technol. 21(2) (2010)
Search WWH ::




Custom Search