Chemistry Reference
In-Depth Information
where all other matrix elements are zeros. Expanding this determinant with respect
to its last column we obtain a recursive relation
a 2
a 1
a 3
a 2
a N
a N 1
D D N 1 1 C . 1/ N 1 a 1 b N .
/.
/:::.
D D N 1 C a N b N
D N
/
completing the proof.
t
Two particular applications of identity (E.1) will be shown next.
Consider first the determinant with the simple structure
0
@
1
A
A 1 ./ B 1 ./ ::: B 1 ./
B 2 ./ A 2 ./ ::: B 2 ./
: : :
: : :
: : :
Det D det
:
(E.2)
: : :
B N ./ B N ./:::A N ./
By introducing vectors b ./ D .B 1 ./;:::;B N .// T ; 1 T
D .1;:::;1/ and the
diagonal matrix D ./ D diag.A 1 ./ B 1 ./;:::;A N ./ B N .// we can rewrite
the determinant as
det . D ./ C b ./ 1 T / D det . D ./ det . I C D 1 ./ b ./ 1 T /:
The first determinant is diagonal, the second has the special structure of (E.1) with
a D D 1 ./ b ./ and b
T
D 1 T . So by using identity (E.1) we have
" 1 C
# :
Y
N
X
N
B k ./
A k ./ B k ./
Det D
.A k ./ B k .//
(E.3)
k
D
1
k
D
1
Consider next a special matrix
0
1
a 1 b 1 ::: b 1
b 2 a 2 ::: b 2
: : : : : : : : :
b N b N :::a N
@
A
A D
:
(E.4)
The characteristic polynomial of this matrix can be determined by using relation
(E.3). Notice that
0
@
1
A
a 1 1 ::: b 1
b 2 a 2 ::: b 2
: : :
det . A I / D det
;
: : :
: : :
b N
b N :::a N
 
Search WWH ::




Custom Search