Biomedical Engineering Reference
In-Depth Information
[42] R. Teramoto and H. Fukunishi, Supervised consensus scoring for docking and virtual
screening, J. Chem. Inf. & Model. , 47, 526-534 (2007).
[43] R. Wang, Y. Lu and S. Wang, Comparative evaluation of 11 scoring functions for
molecular docking, J. Med. Chem. , 46, 2287-2303 (2003).
[44] E. Perola, W. P. Walters and P. S. Charifson, A detailed comparison of current
docking and scoring methods on systems of pharmaceutical relevance, Proteins , 56,
235-249 (2004).
[45] W. T. Mooij and M. L. Verdonk, General and targeted statistical potentials for
protein-ligand interactions, Proteins , 61, 272-287 (2005).
[46] D. Tobi and I. Bahar, Optimal design of protein docking potentials: Efficiency and
limitations, Proteins , 62, 970-981 (2006).
[47] C. Y. Yang, R. Wang and S. Wang, M-score: A knowledge-based potential scoring
function accounting for protein atom mobility, J. Med. Chem. , 49, 5903-5911
(2006).
[48] J. Bernauer, J. Aze, J. Janin and A. Poupon, A new protein-protein docking scoring
function based on interface residue properties, Bioinformatics , 23, 555-562 (2007).
[49] W. Muller and H. Sticht, A protein-specifically adapted scoring function for the
reranking of docking solutions, Proteins , 67, 98-111 (2007).
[50] F. Fogolari, L. Pieri, A. Dovier, L. Bortolussi, G. Giugliarelli, A. Corazza, G. Esposito
and P. Viglino, Scoring predictive models using a reduced representation of proteins:
Model and energy definition, BMC Struct. Biol. , 7, 15 (2007).
[51] P. Ferrara, A. Curioni, E. Vangrevelinghe, T. Meyer, T. Mordasini, W. Andreoni,
P. Acklin and E. Jacoby, New scoring functions for virtual screening from molecular
dynamics simulations with a quantum-refined force-field (QRFF-MD). Application
to cyclin-dependent kinase 2, J. Chem. Inf. & Model. , 46, 254-263 (2006).
[52] R. A. Dammkoehler, S. F. Karasek, E. F. Shands and G. R. Marshall, Constrained
search of conformational hyperspace, J. Comp.-Aid. Mol. Design , 3, 3-21 (1989).
[53] X. Zhang, G. V. Nikiforovich and G. R. Marshall, Conformational templates for
rational drug design: Flexibility of cyclo( D -Pro 1 -Ala 2 -Ala 3 -Ala 4 -Ala 5 ) in DMSO
solution, J. Med. Chem. , 50, 2921-2925 (2007).
[54] N. Metropolis, R.A.E., M. N. Rosenbluth, A. H. Teller and E. Teller, Equation of
state calculations by fast computing machines, J. Chem. Phys. , 21, 1087-1092
(1953).
[55] G. M. Torrie and J. P. Valleau, Nonphysical sampling distributions in Monte Carlo
free-energy estimation - umbrella sampling, J. Comp. Chem. , 23, 187-199 (1977).
[56] Y. Sugita and Y. Okamoto, Replica-exchange molecular dynamics method for
protein folding, Chem. Phys. Lett. , 314, 141-151 (1999).
[57] Y. M. Rhee and V. S. Pande, Multiplexed-replica exchange molecular dynamics
method for protein folding simulation, Biophys. J. , 84, 775-786 (2003).
[58] M. R. Shirts and V. S. Pande, Screensavers of the world unite!, Science , 290,
1903-1904 (2001).
[59] B. Zagrovic, E. J. Sorin and V. Pande, Beta-hairpin folding simulations in atomistic
detail using an implicit solvent model, J. Mol. Biol. , 313, 151-169 (2001).
[60] B. Zagrovic, C. D. Snow, M. R. Shirts and V. S. Pande, Simulation of folding of a
small alpha-helical protein in atomistic detail using worldwide-distributed comput-
ing, J. Mol. Biol. , 323, 927-937 (2002).
[61] K. Dill, S. B. Ozkan, T. R. Weikl, J. D. Chodera and V. A. Voelz, The protein folding
problem: When it will be solved?, Curr. Opin. Struct Biol. , 17, 342-346 (2007).
Search WWH ::




Custom Search