Biomedical Engineering Reference
In-Depth Information
[8] J. R. Deschamps, C. George and J. L. Flippen-Anderson, Structural studies of opioid
peptides: A review of recent progress in x-ray diffraction studies, Biopolymers , 40,
121-139 (1996).
[9] J. Drews, Drug discovery: A historical perspective, Science , 287, 1960-1964 (2000).
[10] K. Palczewski, T. Kumasaka, T. Hori, C. A. Behnke, H. Motoshima, B. A. Fox, I. LeTrong,
D. C. Teller, T. Okada, R. E. Stenkamp, M. Yamamoto and M. Miyano, Crystal structure
of rhodopsin: A G protein-coupled receptor, Science , 289, 739-745 (2000).
[11] S. G. F. Rasmussen, H. Choi, J,, D. M. Rosenbaum, T. S. Kobilka, F. S. Thian, P. C.
Edwards, M. Burghammer, V. R. P. Rathala, R. Sanishvili, R. F. Fischetti, G. F.
Shertler, W. I. Weiss and B. K. Kobilka, Crystal structure of the human b2 adrenergic
G-protein-coupled receptor, Nature , 450, 383-387 (2007).
[12] V. Lafont, A. A. Armstrong, H. Ohtaka, Y. Kiso, L. Mario Amzel and E. Freire,
Compensating enthalpic and entropic changes hinder binding affinity optimization,
Chem. Biol. & Drug Design , 69, 413-422 (2007).
[13] D. A. Pearlman, D. A. Case, J. W. Caldwell, W. S. Ross, T. E. Cheatham III,
S. Debolt, D. Ferguson, G. Seibel and P. Kollman, AMBER, a package of computer
programs for applying molecular mechanics, normal mode analysis and free energy
calculations to simulate the structural and energetic properties of molecules, Comp.
Phys. Comm. , 91, 1-141 (1995).
[14] D. A. Case, T. E. Cheatham III, T. Darden, H. Gohlke, R. Luo, K. M. Mertz,
A. Onufriev, C. Simmerling, B. Wang and R. J. Woods, The AMBER biomolecular
simulation programs, J. Comp. Chem. , 26, 1668-1688 (2005).
[15] L. G. Dunfield, A. W. Burgess and H. A. Scheraga, Energy parameters in polypep-
tides. 8. Empirical potential energy algorithm for the conformational analysis of large
molecules, J. Phys. Chem. , 82, 2609-2616 (1978).
[16] G. Nemethy, M. S. Pottle and H. A. Scheraga, Energy parameters in polypeptides.
9. Updating of geometrical parameters, nonbonded interactions, and hydrogen bond
interactions for the naturally occuring amino acids, J. Phys Chem , 87, 1883-1887 (1983).
[17] G. Nemethy, K. D. Gibson, K. A. Palmer, C. N. Yoon, G. Paterlini, A. Zagari,
S. Rumsey and H. A. Scheraga, Energy parameters in polypeptides. 10. Improved
geometrical parameters and nonbonded interactions for use in the ECEPP/3 algorithm,
with application to proline-containing peptides, J. Phys. Chem. , 96, 6472-6484 (1992).
[18] W. L. Jorgensen and J. Tirado-Rives, The OPLS potential functions for proteins.
Energy minimizations for crystals of cyclic peptides and crambin, J. Am. Chem. Soc. ,
110, 1657-1666 (1988).
[19] W. L. Jorgensen and J. Tirado-Rives, Potential energy functions for atomic-level
simulations of water and organic and biomolecular systems, PNAS , 102, 6665-
6670 (2005).
[20] W. R. P. Scott, P. H. Hunenberg, I. G. Tironi, A. E. Mark, S. R. Billeter, J. Fennen,
A. E. Torda, T. Huber, P. Kruger and W. F. van Gunsteren, The GROMOS biomo-
lecular simulation program package, J. Phys Chem , 103, 3596-3607 (1999).
[21] B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan and
M. Karplus, CHARMM: A program for macromolecular energy, minimization and
dynamics calculations, J. Comp. Chem. , 4, 187-217 (1983).
[22] J. W. Ponder and D. A. Case, Force fields for protein simulations, Adv. Protein
Chem. , 66, 27-85 (2003).
[23] A. D. Mackerell, Empirical force fields for biological macromolecules, J. Comp.
Chem. , 25, 1584-1604 (2004).
Search WWH ::




Custom Search