Biomedical Engineering Reference
In-Depth Information
[42] O. Khakshoor and J. S. Nowick, Artificial b-sheets: Chemical models of b-sheets,
Curr. Opin. Chem. Biol ., 12, 722-729 (2008).
[43] S. Aravinda, N. Shamala, R. Rajkishore, H. N. Gopi and P. Balaram, A crystalline
b-hairpin peptide nucleated by a type I 0 Aib- D -Ala b-turn: Evidence for cross-strand
aromatic interactions, Angew. Chem. Int. Ed ., 41, 3863-3865 (2002).
[44] R. Rai, S. Raghothama, R. Sridharan and P. Balaram, Tuning the b-turn segment in
designed peptide b-hairpins: construction of a stable type I 0 b-turn nucleus and
hairpin-helix transition, Biopolymers , 88, 350-361 (2007).
[45] L. R. Masterson, M. A. Etienne, F. Porcelli, G. Barany, R. P. Hammer and G. Veglia,
Nonstereogenic a-aminoisobuturyl-glycyl-dipeptidyl unit nucleates type I 0 b-turn in
linear peptides in aqueous solution, Biopolymers , 88, 746-753 (2007).
[46] F. A. Syud, J. F. Espinosa and S. H. Gellman, NMR-based quantification of b-sheet
populations inaqueous solution through use of reference peptides for the folded and
unfolded states, J. Am. Chem. Soc ., 121, 11577-11578 (1999).
[47] S. Kang and J. G. Saven, Computational protein design: structure, function and
combinatorial diversity, Curr. Opin. Chem. Biol ., 11, 329-334 (2007).
[48] S. Park, X. Yang and J. G. Saven, Advances in computational protein design, Curr.
Opin. Struct. Biol ., 14, 487-494 (2004).
[49] K. T. Simons, C. Strauss and D. Baker, Prospects for ab initio protein structural
genomics, J. Mol. Biol ., 306, 1191-1199 (2000).
[50] D. Baker and A. Sali, Protein structure prediction and structural genomics, Science ,
294, 93-96 (2001).
[51] B. Kuhlman, G. Dantas, G. C. Ireton, G. Varani, B. L. Stoddard and D. Baker,
Design of a novel globular protein fold with atomic-level accuracy, Science , 302,
1364-1368 (2003).
[52] J. R. Desjarlais and T. M. Handel, De novo design of the hydrophobic cores of
proteins, Protein Sci ., 4, 2006-2018 (1995).
[53] N. D. Clarke and S. M. Yuan, Metal search - A computer program that helps design
tetrahedral metal-binding sites, Proteins , 23, 256-263 (1995).
[54] H. Kono and J. G. Saven, Statistical theory for protein combinatorial libraries.
Packing interactions, backbone flexibility, and the sequence variability of a main-
chain structure, J. Mol. Biol ., 306, 607-628 (2001).
[55] B. I. Dahiyat and S. L. Mayo, De novo protein design: Fully automated sequence
selection, Science , 278, 82-87 (1997).
[56] W. F. DeGrado, Proteins from scratch, Science , 278, 80-81 (1997).
[57] J. Liu, Q. Zheng, Y. Deng, C. S. Cheng, N. R. Kallenbach and M. Lu, A seven-helix
coiled coil, PNAS , 103, 15457-15462 (2006).
[58] J. M. Mason and K. M. Arndt, Coiled coil domains: Stability, specificity, and
biological implications, Chembiochem , 5, 170-176 (2004).
[59] P. B. Harbury, J. J. Plecs, B. Tidor, T. Alber and P. S. Kim, High-resolution protein
design with backbone freedom, Science , 282, 1462-1467 (1998).
[60] S. Y. M. Lau, A. K. Taneja and R. S. Hodges, Synthesis of a model protein of defined
secondary and quarternary structure - Effect of the chain-length on the stabilization
and formation of 2-stranded a-helical coiled-coils, J. Biol. Chem ., 259, 3253-3261
(1984).
[61] O. D. Monera, N. E. Zhou, C. M. Kay and R. S. Hodges, Comparison of antiparallel
and parallel 2-stranded a-helical coiled-coils. Design, synthesis and characteriza-
tion, J. Biol. Chem ., 268, 19218-19227 (1993).
Search WWH ::




Custom Search