Biomedical Engineering Reference
In-Depth Information
References
[1] Alastruey J., Parker K.H., Peiro J., Byrd S.M. and Sherwin S.J.: Modelling the circle of Willis
to assess the effects of anatomical variations and occlusions on cerebral flows. Journal of
Biomechanics 40 : 1794-1805, 2007.
[2] Asay B.W., Son S.F. and Bdzil J.B.: The role of gas permeation in convective burning. Int. J.
Multiphase Flow 23 (5): 923-952, 1996.
[3] Brook B.S., Falle S.A.E.G. and Pedley T.J.: Numerical solutions for unsteady gravity-driven
flows in collapsible tubes: evolution and roll-wave instability of a steady state. Journal of
Fluid Mechanics 396 : 223-256, 1999.
[4] Canic S., Hartley C.J., Rosenstrauch D., Tamba J., Guidoboni G. and Mikelic A.: Blood flow
in compliant arteries: an effective viscoelastic reduced model, numerics, and experimental
validation. Annals of Biomedical Engineering. 34 (4): 575-592, 2006.
[5] Dalmaso G., LeFloch P.L. and Murat F.: Definition and weak stability of non-conservative
products. J. Math Pures Appl. 74 : 483-548, 1995.
[6] Embid P. and Baer M.: Mathematical analysis of a two-phase continuum mixture theory.
Continuum Mech. Thermodyn. 4 : 279-312, 1992.
[7] Formaggia L., Lamponi D. and Quarteroni A.: One-dimensional models for blood flow in
arteries. Journal of Engineering Mathematics 47 : 251-276, 2003.
[8] Fullana M.J. and Zaleski S.: A branched one-dimensional model of vessel networks. Journal
of Fluid Mechanics 621 : 183-204, 2009.
[9] Greenberg J.M., LeRoux A.Y., Barailles R. and Noussair A.: Analysis and approximation of
conservation laws with source terms. SIAM J. Numerical Analysis 34 : 1980-2007, 1997.
[10] Isaacson E. and Temple B.: Nonlinear resonance in systems of conservation-laws, SIAM J
Appl. Math. 52 (5): 1260-1278, 1992.
[11] Jeffrey A.: Quasilinear Hyperbolic Systems and Waves. Pitman, London, 1976.
[12] Kamm R.D. and Shapiro A.H.: Unsteady flow in a collapsible tube subjected to external pres-
sure or body forces. Journal of Fluid Mechanics 95 : 1-78, 1979.
[13] LeVeque R.J.: Balancing source terms and flux gradients in high-resolution Godunov meth-
ods. Journal of Computational Physics 146 : 346-365, 1998.
[14] Liu T.P.: Nonlinear resonance for quasi-linear hyperbolic equation. J. Math. Phys. 28 (11):
2593-2602, 1987.
[15] Marchandise E. and Flaud P.: Accurate modelling of unsteady flows in collapsible tubes.
Computer Methods in Biomechanics and Biomedical Engineering 13 (2): 279-290, 2010.
[16] Pares C.: Numerical methods for nonconservative hyperbolic systems: a theoretical frame-
work. SIAM Journal on Numerical Analysis 44 : 300-321, 2006.
[17] Pedley T.J.: The fluid dynamics of large blood vessels. Cambridge University Press, 1980.
[18] Quarteroni A., Tuveri M. and Veneziani A.: Computational vascular fluid dynamics: prob-
lems, models and methods. Survey article. Comput. Visual Sci. 2 : 163-197, 2000.
[19] Schwendeman D.W., Wahle C.W. and Kapila A.K.: The Riemann problem and a high-
resolution Godunov method for a model of compressible two-phase flow. J. Comput. Phys.
212 : 490-526, 2006.
[20] Sherwin S.J., Formaggia L., Peiro J. and Franke V.: Computational modelling of 1D blood
flow with variable mechanical properties and its application to the simulation of wave prop-
agation in the human arterial system. International Journal for Numerical Methods in Fluids
43 : 673-700, 2003.
[21] Toro E.F.: Shock capturing methods for free surface shallow water flows. Wiley and Sons,
2001.
[22] Toro E.F.: Riemann solvers and numerical methods for fluid dynamics. Third edition,
Springer-Verlag, 2009.
[23] Umscheid T. and Stelter W.J.: Time-related alterations in shape, position, and structure of
self-expanding modular aortic stent grafts: a 4-year single-centre follow up. J. Endovasc.
Surg. 6 : 17-32, 1999.
Search WWH ::




Custom Search