Biomedical Engineering Reference
In-Depth Information
[50] Quarteroni A., Veneziani A.: Analysis of a geometrical multiscale model based on the
coupling of ODEs and PDEs for blood flow simulations. SIAM J. on Multiscale Model.
Simul. 1 (2): 173-195, 2003.
[51] Quarteroni A., Tuveri M., Veneziani A.: Computational vascular fluid dynamics: problems,
models and methods. Computing and Visualization in Science 2 (4): 163-197, 2000.
[52] Reichold J., Stampanoni M., Lena Keller A., Buck A., Jenny P., Weber B.: Vascular graph
model to simulate the cerebral blood flow in realistic vascular networks. J. Cereb. Blood
Flow Metab. 29 (8): 1429-1443, 2009.
[53] Reymond P., Merenda F., Perren F., R ufenacht D., Stergiopulos N.: Validation of a one-
dimensional model of the systemic arterial tree. Am. J. Physiol. Heart Circ. Physiol. 297 (1):
H208-H222, 2009.
[54] Schaaf B.W., Abbrecht P.H.: Digital computer simulation of human systemic arterial pulse
wave transmission: A nonlinear model. J. Biomech. 5 (4): 345-364, 1972.
[55] Spencer M.P., Deninson A.B.: The square-wave electro-magnetic flowmeter. Theory of
operation and design of magnetic probes for clinical and experimental applications. I.R.E.
Trans. Med. Elect. 6 : 220-228, 1959.
[56] Stergiopulos N., Young D.F., Rogge T.R.: Computer simulation of arterial flow with
applications to arterial and aortic stenoses. J. Biomech. 25 (12): 1477-1488, 1992.
[57] Stettler, J.C., Niederer, P., Anliker, M.: Theoretical analysis of arterial hemodynamics
including the influence of bifurcations. Part I: mathematical models and prediction of normal
pulse patterns. Ann. Biomed. Engrg. 9 (2): 145-164, (1981).
[58] Strang G., Fix G.J.: An Analysis of the Finite Element Method. Prentice-Hall, New York,
1973.
[59] Taylor C.A., Hughes T.J.R., Zarins C.K.: Finite element modeling of three-dimensional
pulsatile flow in the abdominal aorta: relevance to atherosclerosis. Ann. Biomed. Engrg.
26 (6): 975-987, 1998.
[60] Urquiza S.A., Blanco P.J., Venere M.J., Feij oo R.A.: Multidimensional modelling for the
carotid artery blood flow. Comput. Methods Appl. Mech. Engrg. 195 (33-36): 4002-4017,
2006.
[61] van Heusden K., Gisolf J., Stok W.J., Dijkstra S., Karemaker J.M.: Mathematical modeling
of gravitational effects on the circulation: importance of the time course of venous pool-
ing and blood volume changes in the lungs. Am J. Physiol. Heart Circ. Physiol. 291 (5),
H2152-H2165, 2006.
[62] Vignon-Clementel I.E., Figueroa C.A., Jansen K.E., Taylor C.A.: Outflow boundary condi-
tions for three-dimensional finite element modeling of blood flow and pressure in arteries.
Comput. Methods Appl. Mech. Engrg. 195 (29-32): 3776-3796, 2006.
[63] Vignon-Clementel I.E., Figueroa C.A., Jansen K.E., Taylor C.A.: Outflow boundary condi-
tions for 3D simulations of non-periodic blood flow and pressure fields in deformable arteries.
Comput. Methods Biomech. Biomed. Engrg. 13 : 625-640, 2010.
[64] Wang J.J., Parker K.H.: Wave propagation in a model of the arterial circulation. J. Biomech.
37 (4): 457-470, 2004.
[65] Xiang J., Natarajan S.K., Tremmel M., Ma D., Mocco J., Hopkins L.N., Siddiqui A.H.,
Levy E.I., Meng H.: Hemodynamic-morphologic discriminants for intracranial aneurysm
rupture. Stroke 42 : 144-152, 2011.
Search WWH ::




Custom Search