Biomedical Engineering Reference
In-Depth Information
[28] Kim H.J., Vignon-Clementel I.E., Figueroa C.A., LaDisa J.F., Jansen, K.E. Feinstein J.A.,
Taylor C.A.: On coupling a lumped parameter heart model and a three-dimensional finite
element aorta model. Ann. Biomed. Engng. 37 (11): 2153-2169, 2009.
[29] Kivity Y., Collins R.: Nonlinear fluid-shell interactions: application to blood flow in large
arteries. In: Proceedings of the International Symposium on Discrete Methods Engineering:
476-488, 1974.
[30] Kivity Y., Collins R.: Nonlinear wave propagation in viscoelastic tubes: application to aortic
rupture. J. Biomech. 7 (1): 67-76, 1974.
[31] Korakianitis T., Shi Y.: Numerical simulation of cardiovascular dynamics with healthy and
diseased heart valves. J. Biomech. 39 (11): 1964-1982, 2006.
[32] Ku D.N., Giddens D.P., Zarins C.K., Glagov S.: Pulsatile flow and atherosclerosis in the
human carotid bifurcation. Arteriosclerosis 5 (3): 293-302, 1985.
[33] Kufahl R.H., Clark M.E.: A circle of willis simulation using distensible vessels and pulsatile
flow. J. Biomech. Engrg. 107 (2): 112-122, 1985.
[34] Lagana K., Dubini G., Migliavacca F., Pietrabissa R., Pennati G., Veneziani A., Quar-
teroni A.: Multiscale modelling as a tool to prescribe realistic boundary conditions for the
study of surgical procedures. Biorheology 39 (3-4): 359-364, 2002.
[35] Lanzarone E., Liani P., Baselli G., Costantino M.L.: Model of arterial tree and peripheral
control for the study of physiological and assisted circulation. Medical Engineering and
Physics 29 (5): 542-555, 2007.
[36] Leiva
J.S.,
Blanco
P.J.,
Buscaglia
G.C.:
Iterative
strong
coupling
of
dimensionally-
heterogeneous models. Int. J. Num. Meth. Engrg. 81 : 1558-1580, (2010).
[37] Li X.M., Rittgers S.E.: Hemodynamic factors at the distal end-to-side anastomosis of a
bypass graft with different POS:DOS flow ratios. J. Biomech. Engng. 123 : 270-276, (2001).
[38] Liang
F.,
Liu
H.:
A closed-loop
lumped
parameter
computational
model
for
human
cardiovascular system. JSME International Journal Series C 48 (4): 484-493, 2005.
[39] Liang F., Liu H.: Simulation of hemodynamic responses to the valsalva maneuver: An
integrative computational model of the cardiovascular system and the autonomic nervous
system. J. Physiol. Sci. 56 (1): 45-65, 2006.
[40] Liang F., Takagi S., Himeno R., Liu H.: Multi-scale modeling of the human cardiovascular
system with applications to aortic valvular and arterial stenoses. Med. Biol. Eng. Comput.
47 : 743-755, 2009.
[41] L ohner R., Cebral J., Soto O., Yim P., Burgess, J.E.: Applications of patient-specific CFD in
medicine and life sciences, Int. J. Numer. Meth. Fluids 43 (6-7): 637-650, 2003.
[42] Murphy J.B., Boyle F.J.: A numerical methodology to fully elucidate the altered wall shear
stress in a stented coronary artery. Cardiovascular Engineering and Technology, 1 : 256-268
2010.
[43] Migliavacca F., Balossino R., Pennati G., Dubini G., Hsia T-Y., de Leval M.R., Bove E.L.:
Multiscale modelling in biofluidynamics: Application to reconstructive paediatric cardiac
surgery. J. Biomech. 39 (6): 1010-1020, 2006.
[44] Oden J.T.: Applied Functional Analysis. Prentice-Hall, New Jersey, 1979.
[45] Olufsen M.S., Ottesen J.T., Tran H.T., Ellwein L.M., Lipsitz L.A., Novak V.: Blood pressure
and blood flow variation during postural change from sitting to standing: model development
and validation. J. Appl. Physiol. 99 (4): 1523-1537, 2005.
[46] Olufsen, M.S., Peskin, C.S., Kim, W.Y., Pedersen, E.M., Nadim, A., Larsen, J.: Numerical
simulation and experimental validation of blood flow in arteries with structured-tree outflow
conditions. Ann. Biomed. Engng. 28 (11): 1281-1299, 2000.
[47] Oshima, M., Torii, R., Kobayashi, T., Taniguchi, N., Takagi, K.: Finite element simulation of
blood flow in the cerebral artery. Comput. Methods Appl. Mech. Engrg. 191 (6-7): 661-671,
2001.
[48] Perktold K., Rappitsch G.: Computer simulation of local blood flow and vessel mechanics in
a compliant carotid artery bifurcation model. J. Biomech. 28 (7): 845-856, 1995.
[49] Pontrelli G.: A multiscale approach for modelling wave propagation in an arterial segment.
Comp. Meth. Biomech. Biom. Engrg. 7 (2): 79-89, 2004.
Search WWH ::




Custom Search