Biomedical Engineering Reference
In-Depth Information
[7] Blanco P.J., Feijoo R.A., Urquiza S.A.: A variational approach for coupling kinematically
incompatible structural models. Comp. Meth. Appl. Mech. Engrg. 197 (17-18): 1577-1602,
2008.
[8] Blanco P.J., Urquiza S.A., Feijoo R.A.: Assessing the influence of heart rate in local hemo-
dynamics through coupled 3D-1D-0D models. International Journal for Numerical Methods
in Biomedical Engineering 26 (7): 890-903, 2010.
[9] Blanco P.J., Pivello M.R., Urquiza, S.A., Feij oo R.A.: On the potentialities of 3D-1D coupled
models in hemodynamics simulations. Journal of Biomechanics 42 (7): 919-930, 2009.
[10] Blanco P.J., Leiva J.S., Buscaglia G.C.: Black-box decomposition approach for computational
hemodynamics: One-dimensional models. Comp. Meth. Appl. Mech. Engrg. 200 (13-16):
1389-1405, 2011.
[11] Brezzi F., Fortin M.: Mixed and Hybrid Finite Element Methods. Springer-Verlag, New
York, 1991.
[12] Caro C.G., Fitz-Gerald J.M., Schroter R.C.: Atheroma and arterial wall shear dependent mass
transfer mechanism for atherogenesis. Proc. Roy. Soc. London Biol. B177 : 109-159, 1971.
[13] Cebral J., Castro M., Appanaboyina S., Putman C., Millan D., Frangi A.: Efficient pipeline
for image-based patient-specific analysis of cerebral aneurysm hemodynamics: Technique
and sensitivity. IEEE Trans. Med. Imaging 24 : 457-467, 2005.
[14] Cebral J.R., Sheridan M., Putman C.M.: Hemodynamics and bleb formation in intracranial
aneurysms. American Journal of Neuroradiology 31 : 304-310, 2010.
[15] Dhar S., Tremmel M., Mocco J., Kim M., Yamamoto J., Siddiqui A.H., Hopkins L.N.,
Meng
H.:
Morphology
parameters
for
intracranial
aneurysm
rupture
risk
assessment.
Neurosurgery 63 : 185-197, 2008.
[16] Fernandez M.A., Milisic V., Quarteroni A.: Analisys of a geometrical multiscale blood flow
model based onthe coupling of ODEs and hyperbolic PDEs. SIAM J. on Multiscale Model
Simul. 4 (1),: 215-236, 2005.
[17] Formaggia L., Nobile F., Quarteroni A., Veneziani A.: Multiscale modelling of the vascular
system: A preliminary analysis. Comp. Vis. Sci. 2 : 75-84, 1999.
[18] Formaggia L., Gerbeau J.F., Nobile F., Quarteroni A.: On the coupling of 3D and 1D
Navier-Stokes equations for flow problems in compliant vessels, Comput. Methods Appl.
Mech. Engrg. 191 (6-7): 561-582, 2001.
[19] Formaggia L., Gerbeau J.F. Nobile F., Quarteroni A.: Numerical treatment of defective bound-
ary conditions for the Navier-Stokes equations. SIAM J. Numer. Anal. 40 (1): 376-401, 2002.
[20] Giddens D.P., Zarins C.K., Glagov S.: The role of fluid mechanics in the localization and
detection of atherosclerosis. J. Biomech. Engrg. 115 : 588-594, (1993).
[21] Grinberg L., Anor T., Madsen J., Yakhot A., Karniadakis G.: Large-scale simulation of the hu-
man arterial tree. Clinical and Experimental Pharmacology and Physiology 36 : 194-205, 2009.
[22] Heldt T., Shim E., Kamm R., Mark R.: Computational modeling of cardiovascular response
to orthostatic stress. J. Appl. Physiol. 92 : 1239-1254, 2002.
[23] Heywood J.G., Rannacher R., Turek S.: Artificial boundaries and flux and pressure conditions
for the incompressible Navier Stokes equations. Int. J. Numer. Methods Fluids 22 : 325-352,
1996.
[24] Hoppensteadt F., Peskin C.: Modeling and Simulation in Medicine and the Life Sciences.
Texts in Applied Mathematics, Springer, 2002.
[25] Hughes T.J.R., Lubliner J.: On the one-dimensional theory of blood flow in the larger vessels.
Math. Biosci. 18 (1-2): 161-170, 1973.
[26] Keynton R.S., Evancho M.M., Sims R.L., Rodway N.V., Gobin A., Rittgers S.E.: Intimal
hyperplasia and wall shear in arterial bypass graft distal anastomoses: an in vivo model study.
J. Biomech. Engng. 123 : 464-473, 2001.
[27] Kim H.J., Figueroa C.A., Hughes T.J.R., Jansen K.E., Taylor C.A.: Augmented lagrangian
method for constraining the shape of velocity profiles at outlet boundaries for three-dimen-
sional finite element simulations of blood flow. Comp. Meth. Appl. Mech. Engrg. 198 (45-46):
3551-3566, 2009.
Search WWH ::




Custom Search