Biomedical Engineering Reference
In-Depth Information
[20] Humphrey J.D.: Cardiovascular Solid Mechanics: Cells, Tissues, and Organs. Springer-
Verlag, New York, 2002.
[21] Humphrey J.D., Baek S., Niklason L.E.: Biochemomechanics of cerebral vasospasm and its
resolution: I. a new hypothesis and theoretical framework. Ann. Biomed. Eng. 35 (9): 1485-
1497, 2007.
[22] Humphrey J.D., Na S.: Elastodynamics and arterial wall stress. Ann. Biomed. Eng. 30 (4):
509-23, 2002.
[23] Humphrey J.D., Rajagopal K.R.: A constrained mixture model for growth and remodeling of
soft tissues. Math. Models. Methods. Appl. Sci. 128 (3): 407-30, 2002.
[24] Humphrey J.D., Rajagopal K.R.: A constrained mixture model for arterial adaptations to a
sustained step change in blood flow. Biomech. Mod. Mechanobiol. 22 : 109-126, 2003.
[25] Karsaj I., Humphrey J.: A mathematical model of evolving mechanical properties of intralu-
minal thrombus. Biorheology 46 (6): 509-527, 2009.
[26] Langille B.L.: Arterial remodeling: relation to hemodynamics. Can. J. Physiol. Pharmacol.
74 (7): 834-41, 1996.
[27] Langille B.L., Bendeck M.P., Keeley F.W.: Adaptations of carotid arteries of young and ma-
ture rabbits to reduced carotid blood flow. Am. J. Physiol. 256 (4 Pt 2): H931-9, 1989.
[28] Langille B.L., O'Donnell F.: Reductions in arterial diameter produced by chronic decreases
in blood flow are endothelium-dependent. Science 231 (4736): 405-407, 1986.
[29] Malek A., Izumo S.: Physiological fluid shear stress causes downregulation of endothelin-1
mRNA in bovine aortic endothelium. Am. J. Physiol. 263 (2 Pt 1): C389-96, 1992.
[30] Matsumoto T., Hayashi K.: Stress and strain distribution in hypertensive and normotensive
rat aorta considering residual strain. J. Biomech. Eng. 118 (1): 62-73, 1996.
[31] Rizvi M.A.D., Katwa L., Spadone D.P., Myers P.R.: The effects of endothelin-1 on collagen
type I and type III synthesis in cultured porcine coronary artery vascular smooth muscle cells.
J. Mol. Cell Cardiol. 28 (2): 243-252, 1996.
[32] Rizvi M.A.D., Myers P.R.: Nitric oxide modulates basal and endothelin-induced coronary
artery vascular smooth muscle cell proliferation and collagen levels. J. Mol. Cell Cardiol.
27 (7): 1779-1789, 1997.
[33] Rodbard S.: Vascular caliber. Cardiology 60 (1): 4-49, 1975.
[34] Taber L.A.: A model for aortic growth based on fluid shear and fiber stresses. J. Biomech.
Eng. 120 (3): 348-54, 1998.
[35] Taber L.A., Humphrey J.D.: Stress-modulated growth, residual stress, and vascular hetero-
geneity. J. Biomech. Eng. 123 : 528-535, 2001.
[36] Tada S., Tarbell J.M.: A computational study of flow in a compliant carotid bifurcation-stress
phase angle correlation with shear stress. Ann. Biomed. Eng. 33 (9): 1202-1212, 2005.
[37] Valentın A., Cardamone L., Baek S., Humphrey J.D.: Complementary vasoactivity and matrix
remodeling in arterial adaptations to altered flow and pressure. J. Roy. Soc. Interface 6 : 293-
306, 2009.
[38] Valentın A., Humphrey J.: Modeling effects of axial extension on arterial growth and remod-
eling. Medical and Biological Engineering and Computing 47 (9): 979-987, 2009.
[39] Zamir M.: The Physics of Pulsatile Flow. Springer, New York, 2000.
Search WWH ::




Custom Search