Biomedical Engineering Reference
In-Depth Information
[112] Watton P., Ventikos Y., Holzapfel G.: Modelling the mechanical response of elastin for
arterial tissue. J. Biomech. 42 : 1320-1325, 2009.
[113] Weber T., Auer J., Eber B., O'Rourke M.F.: Relationship between reduced elasticity of
extracardiac vessels and left main stem coronary artery disease.
European heart journal
25 (21): 1966-1967, 2004.
[114] Weber T., Auer J., O'Rourke M.F. Kvas E., Lassnig E., Lamm G., Stark N., Rammer M.,
Eber B.: Increased arterial wave reflections predict severe cardiovascular events in patients
undergoing percutaneous coronary interventions.
European heart journal 26 (24): 2657-
2663, 2005.
[115] Wiechert L., Metzke R., Wall W.A.: Modeling the mechanical behaviour of lung tissue at the
micro-level. Mechanics of Biological and bioinspired materials in Journal of Engineering
Mechanics 135 (5): 434-438, 2009. DOI 10.1061/(ASCE)0733-9399(2009)135:5(434).
[116] Wojak J.C., Dunlap D.C., Hargrave K.R., DeAlvare L.A., Culbertson H.S., Connors J. Jr.:
Intracranial angioplasty and stenting: long-term results from a single center. AJNR Am. J.
Neuroradiol. 27 (9): 1882-1892, 2006.
[117] Wolinsky H., Glagov S.: Structural basis for the static mechanical properties of the aortic
media. Circulation research 14 : 400-413, 1964.
[118] Wulandana R., Robertson A.: Use of a multi-mechanism constitutive model for inflation of
cerebral arteries. In: First Joint BMES/EMBS Conference, vol. 1, p. 235. Atlanta, GA, 1999.
[119] Wulandana R., Robertson A.M.: An inelastic multi-mechanism constitutive equation for
cerebral arterial tissue. Biomech. Model. Mechanobiol. 4 (4): 235-248, 2005.
[120] Zeng Z., Chung B.J., Durka M., Robertson A.M.: An in vitro device for evaluation of cellular
response to flows found at the apex of arterial bifurcations. In: R. Rannacher, A. Sequeira
(eds.) Advances in Mathematical Fluid Mechanics: Dedicated to Giovanni Paolo Galdi on
the Occasion of his 60th Birthday. Springer-Verlag, New York, 2010.
[121] Zipfel W.R., Williams R.M., Christie R., Nikitin A.Y., Hyman B.T., Webb W.W.: Live tis-
sue intrinsic emission microscopy using multiphoton-excited native fluorescence and second
harmonic generation. Proceedings of the National Academy of Sciences of the United States
of America 100 (12): 7075-7080, 2003.
[122] Zollikofer C.L., Chain J., Salomonowitz E., Runge W., Bruehlmann W.F., Castaneda-
Zuniga W.R., Amplatz K.: Percutaneous transluminal angioplasty of the aorta. light and
electron microscopic observations in normal and atherosclerotic rabbits. Radiology 151 (2):
355-363, 1984.
[123] Zoumi A., Lu X., Kassab G., Tromberg B.: Imaging coronary artery microstructure using
second harmonic and two-photon fluorescence microscopy. Biophys J 87 : 2778-2786 (2004)
[124] Zulliger M., Stergiopulos N.: Structural strain energy function applied to the ageing of the
human aorta. Journal of biomechanics 40 (14): 3061-3069, 2007.
[125] Zulliger M.A., Rachev A., Stergiopulos N.: A constitutive formulation of arterial mechanics
including vascular smooth muscle tone. Am J Physiol-Heart C 287 (3): H1335-H1343, 2004.
Search WWH ::




Custom Search