Biomedical Engineering Reference
In-Depth Information
[66] Lanir Y.: A structural theory for the homogeneous biaxial stress-strain relationships in flat
collagenous tissues. Journal of biomechanics 12 (6): 423-436, 1979.
[67] Lanir Y.: Constitutive equations for fibrous connective tissues.
Journal of biomechanics
16 (1): 1-12, 1983.
[68] Lee R.M.: Morphology of cerebral arteries. Pharmacology & therapeutics 66 (1): 149-173,
1995.
[69] Lematire J., Desmorat R.: Engineering damage mechanics: ductile, creep, fatigue and brittle
failures. Springer, 2005.
[70] Li D.: Structural multi-mechanism model with anisotropic damage for cerebral arterial tis-
sues and its finite element modeling. Ph.D. thesis, University of Pittsburgh, 2009.
[71] Li D., Robertson, A.: A structural multi-mechanism constitutive model for cerebral arterial
tissue. Int. J. Solids Struct. 46 : 2920-2928, 2009.
[72] Li D., Robertson, A.M.: Finite element modeling of cerebral angioplasty using a multi-
mechanism structural damage model. In: Proceedings of the ASME 2009 Summer Bio-
engineering Conference (SBC-2009), 2009.
[73] Li D., Robertson A.M.: A structural damage model for cerebral arterial tissue and angio-
plasty simulation. In: 10th US National Congress on Computational Mechanics (USNCCM
X), 2009.
[74] Li D., Robertson A.M.: A structural multi-mechanism damage model for cerebral arterial
tissue. J. Biomech. Eng. 131 : 8 pages, 2009. Doi: 10.1115/1.3202559
[75] Li D., Robertson A.M., Guoyu L.: Finite element modeling of cerebral angioplasty using a
structural multi-mechanism anisotropic damage model. submitted for publication, 2011.
[76] Meng H., Swartz D.D., Wang Z., Hoi Y., Kolega J., Metaxa E.M., Szymanski M.P., Ya-
mamoto J., Sauvageau E., Levy E.I.: A model system for mapping vascular responses to
complex hemodynamics at arterial bifurcations in vivo.
Neurosurgery 59 (5): 1094-100;
discussion 1100-1, 2006.
[77] Meng H., Wang Z., Hoi Y., Gao L., Metaxa E., Swartz D.D., Kolega J.: Complex hemody-
namics at the apex of an arterial bifurcation induces vascular remodeling resembling cerebral
aneurysm initiation. Stroke 38 (6): 1924-1931, 2007.
[78] Miehe C.: Discontinuous and continuous damage evolution in ogden-type large-strain elastic
materials. Eur. J. Mech. A/Solids 14 (5): 697-720, 1995.
[79] Mohan D., Melvin J.W.: Failure properties of passive human aortic tissue. i-uniaxial tension
tests. Journal of biomechanics 15 (11): 887-902 (1982)
[80] Montes G.S.: Structural biology of the fibres of the collagenous and elastic systems. Cell
Biol Int 20 (1): 15-27, 1996.
[81] Morimoto M., Miyamoto S., Mizoguchi A., Kume N., Kita T., Hashimoto N.: Mouse model
of cerebral aneurysm: experimental induction by renal hypertension and local hemodynamic
changes. Stroke; A Journal Of Cerebral Circulation 33 (7): 1911-1915, 2002.
[82] Mullins L.: Effect of stretching on the properties of rubber.
Rubber Chem. Technol. 21 :
281-300, 1948.
[83] Mullins L.: Softening of rubber by deformation.
Rubber Chemistry and Technology 42 :
339-362, 1969.
[84] Oktay H.: Continuum damage mechanics of balloon angioplasty.
doctoral, University of
Maryland, Baltimore County (1993)
[85] O'Rourke M.: Mechanical principles in arterial disease. Hypertension 26 : 2-9, 1995.
[86] O'Rourke M.F.: Vascular mechanics in the clinic. Journal of biomechanics 36 (5): 623-630,
2003.
[87] Pe na E., Alastrue V., Laborda A., Martınez M.A., Doblare M.: A constitutive formulation
of vascular tissue mechanics including viscoelasticity and softening behaviour. Journal of
biomechanics 43 (5): 984-989, 2010.
[88] Pe na E., Pe na J.A., Doblare M.: On the mullins effect and hysteresis of fibreed biological
materials: A comparison between continuous and discontinuous damage models. Interna-
tional Journal of Solids and Structures 46 (7-8): 1727-1735, 2009.
Search WWH ::




Custom Search