Biomedical Engineering Reference
In-Depth Information
[143] Trew M., Smaill B., Bullivant D., Hunter P., Pullan A.: A generalized finite difference
method for modeling cardiac electrical activation on arbitrary, irregular computational
meshes. Math. Biosci. 198 (2): 169-189, 2005.
[144] Trew M.L., Caldwell B.J., Sands G.B., Hooks D.A., Tai D.C.-S., Austin T.M., LeGrice I.J.,
Pullan A.J., Smaill B.H.: Cardiac electrophysiology and tissue structure: bridging the scale
gap with a joint measurement and modelling paradigm. Exp. Physiol. 91 (2): 355-370, 2006.
[145] Tung L.: A bidomain model for describing ischemic myocardial D.C. potentials. Ph.D. dis-
sertation M.I.T., Cambridge, MA, 1978.
[146] Veneroni M.: Reaction-diffusion systems for the microscopic cellular model of the cardiac
action potential. Math. Meth. Appl. Sci. 29 : 1631-1661, 2006.
[147] Veneroni M.: Reaction-diffusion systems for the macroscopic Bidomain model of the car-
diac action potential. Nonlinear Anal.-Real World Appl. 10 (2): 849-868, 2009.
[148] Vigmond E.J., Aguel F., Trayanova N.A.: Computational techniques for solving the bido-
main equations in three dimensions. IEEE Trans. Biomed. Eng. 49 (11): 1260-1269, 2002.
[149] Vigmond E.J., Weber dos Santos R., Prassl A.J., Deo M., Plank G.: Solvers for the cardiac
bidomain equations. Progr. Biophys. Molec. Biol. 96 : 3-18, 2008.
[150] Weber dos Santos R., Plank G., Bauer S., Vigmond E.J.: Parallel multigrid preconditioner
for the cardiac bidomain model. IEEE Trans. Biomed. Eng. 51 (11) : 1960-1968, 2004.
[151] Whiteley J.P.: An efficient numerical technique for the solution of the monodomain and
bidomain equations. IEEE Trans. Biomed. Eng. 53 (11): 2139-2147, 2006.
[152] Whiteley J.P.: Physiology Driven Adaptivity for the Numerical Solution of the Bidomain
Equations. Ann. Biomed. Eng. 35 (9): 1510-1520, 2007.
[153] Wikswo J.P. Jr.: Tissue anisotropy, the cardiac bidomain, and the virtual cathode effect, In
Cardiac Electrophysiology: from cell to bedside, (2nd ed), Zipes D.P. and Jalife J. (eds.):
348-361, WB Saunders, Philadelphia, 1994.
[154] Wikswo J.P. Jr., Lin L.-F., Abbas R.A.: Virtual electrodes in cardiac tissue: a common mech-
anism for anodal and cathodal stimulation. Biophys. J. 69 : 2195-2210, 1995.
[155] Wiskwo J.P. Jr., Roth B.J.: Virtual electrode theory of pacing. In Cardiac Bioelectric Ther-
apy Efimov I.r., Kroll M.W. and Tchou (eds.), Ch. 4.3, 283-330, Springer Science+Business
Media, LLc, 2009.
[156] Xie F., Qu Z.L., Yang J., Baher A., Weiss J.N., Garfinkel A.: A simulation study of the
effects of cardiac anatomy in ventricular fibrillation. J. Clin Invest. 113 : 686-693, 2004.
[157] Xu A., R M.: Guevara. Two forms of spiral-wave reentry in an ionic model of ischemic
ventricular myocardium. Chaos 8 (1): 157-174, 1998.
[158] Ying W.J., Rose D.J., Henriquez C.S.: Efficient Fully Implicit Time Integration Methods for
Modeling Cardiac Dynamics. IEEE Trans. Biomed. Eng. 55 (12): 2701-2711, 2008.
[159] Zhang X.: Multilevel Schwarz methods. Numer. Math. 63 (4): 521-539, 1992.
[160] Zipes D.P., Jalife J. (eds.): Cardiac Electrophysiology: From Cell to Bedside, 5th ed., Saun-
ders, 2009.
[161] Zozor S., Blanc O., Jacquemet V., Virag N., Vesin J., Pruvot E., Kappenberger L., Henriquez
C.: A numerical scheme for modeling wavefront propagation on a monolayer of arbitrary
geometry. IEEE Trans. Biomed. Eng. 50 (4): 412-420, 2003.
Search WWH ::




Custom Search