Biomedical Engineering Reference
In-Depth Information
[97] Puwal S., Roth B.J.: Forward Euler stability of the bidomain model of cardiac tissue. IEEE
Trans. Biomed. Eng. 54 (5): 951-953, 2007.
[98] Qu Z., Garfinkel A.: An advanced algorithm for solving partial differential equation in car-
diac conduction. IEEE Trans. Biomed. Eng. 46 : 1166-1168, 1999.
[99] Quan W., Evans S.J., Hastings H.M.: Efficient integration of a realistic two-dimensional
cardiac tissue model by domain decomposition. IEEE Trans. Biomed. Eng. 45 : 372-385,
1998.
[100] Ranjan R., Tomaselli G.F., Marban E.: A novel mechanism of anode-break stimulation pre-
dicted by bidomain modeling. Circ. Res. 84 : 153-156, 1999.
[101] Rogers J.M., McCulloch A.D.: A collocation-Galerkin finite element model of cardiac action
potential propagation. IEEE Trans. Biomed. Eng. 41 : 743-757, 1994.
[102] Roth
B.J.: Approximate
analytic
solutions
to
the
bidomain
equations
with
unequal
anisotropy ratio. Phys. Rev. E 55 (2): 1819-1826, 1997.
[103] Roth B.J.: How the anisotropy of the intracellular and extracellular conductivities influence
stimulation of cardiac muscle. J. Math. Biol. 30 : 633-646, 1992.
[104] Roth B.J., Wikswo J.P. Jr.: Electrical stimulation of cardiac tissue: a bidomain model with
active membrane properties. IEEE Trans. Biomed. Eng. 41 (3): 232-240, 1994.
[105] Roth B.J.: A mathematical model of make and break electrical stimulation of cardiac tissue
by a unipolar anode or cathode. IEEE Trans. Biomed. Eng. 42 : 1174-1184, 1995.
[106] Roth B.J.: Strength-Interval curve for cardiac tissue predicted using the bidomain model. J.
Cardiovasc. Electrophysiol. 7 : 722-737, 1996.
[107] Roth B.J.: Nonsustained reentry following successive stimulation of cardiac tissue through
a unipolar electrode. J. Cardiovasc. Electrophysiol. 8 : 768-778, 1997.
[108] Roth B.J., Lin S.-F., Wikswo J.P. Jr.: Unipolar stimulation of cardiac tissue. J. Electrocardiol.
31 (Suppl.): 6-12, 1998.
[109] Roth B.J., Chen J.: Mechanism of anode break excitation in the heart: the relative influence
of membrane and electrotonic factors. J. Biol. Systems 7 (4): 541-552, 1999.
[110] Roth B.J., Patel S.G.: Effects of elevated extracellular potassium ion concentration on anodal
excitation of cardiac tissue. J. Cardiovasc. Electrophysiol. 14 : 1351-1355, 2003.
[111] Janks D.L., Roth B.J.: The bidomain theory of pacing. In Cardiac Bioelectric Therapy, Efi-
mov I.R., Kroll M.W. and Tchou (eds.), Ch. 2.1, 63-83, Springer Science+Business Media,
LLc, 2009.
[112] Rudy Y., Oster H.S.: The electrocardiographic inverse problem. Crit. Rev. Biomed. Eng.
20 : 25-45, 1992.
[113] Rudy Y., Silva J.R.: Computational biology in the study of cardiac ion channels and cell
electrophysiology. Quart. Rev. Biophys. 39 (1): 57-116, 2006.
[114] Saffitz J.E., Kanter H.L., Green K.G., Tolley T.K., Beyer E.C.: Tissue-specific determinants
of anisotropic conduction velocity in canine atrial and ventricular myocardium. Circ. Res.
74 : 1065-1070, 1994.
[115] Saleheen H.I., Ng K.T.: A new three-dimensional finite-difference bidomain formulation for
inhomogeneous anisotropic cardiac tissues. IEEE Trans. Biomed. Eng. 45 (1): 15-25, 1998.
[116] Sambelashvili A., Efimov I.R.: Dynamics of virtual electrode-induced scroll-wave reentry
in a 3D bidomain model. Am. J. Physiol Heart Circ. Physiol. 287 : H1570-H1581, 2004.
[117] Sambelashvili A., Nikolski V.P., Efimov I.R.: Virtual electrode theory explains pacing
threshold increase caused by cardiac tissue damage. Am. J. Physiol Heart Circ. Physiol.
286 : H2183-H2194, 2004.
[118] Sanchez-Palencia E., Zaoui A.: Homogenization Techniques for Composite Media. Lectures
Notes in Physics, volume 272. Springer-Verlag; Berlin; 1987
[119] Sanfelici S.: Convergence of the Galerkin approximation of a degenerate evolution problem
in electrocardiology. Numer. Meth. Part. Diff. Eq. 18 : 218-240, 2002.
[120] Scacchi S.: A hybrid multilevel Schwarz method for the bidomain model. Comp. Meth.
Appl. Mech. Engrg. 197 (45-48): 4051-4061, 2008.
[121] Scacchi S.: A multilevel hybrid Newton-Krylov-Schwarz method for the Bidomain model
of electrocardiology. Comp. Meth. Appl. Mech. Engrg. 200 (5-8): 717-725, 2011.
Search WWH ::




Custom Search