Biomedical Engineering Reference
In-Depth Information
[52] Gerardo Giorda L., Mirabella L., Nobile F., Perego M., Veneziani A.: A model-based block-
triangular preconditioner for the Bidomain system in electrocardiology. J. Comp. Phys.
228 (10): 3625-3639, 2009.
[53] Geselowitz D.B., Miller W.T.: A bidomain model for anisotropic cardiac muscle. Ann.
Biomed. Eng. 11 : 191-206, 1983.
[54] Gulrajani R.M., Roberge F.A., Savard P.: The inverse problem of electrocardiography. In
Comprehensive Electrocardiology, P.W. Macfarlane and T.T.V. Lawrie (eds.), I: ch. 9,
pp. 237-288, Pergamon Oxford, 1989.
[55] Harrild D.M., Henriquez C.S.: A finite volume model of cardiac propagation. Ann. Biomed.
Eng. 28 (2): 315-334, 1997.
[56] Heidenreich E.A., Rodriguez J.F., Gaspar F.J., Doblare M.: Fourth-order compact schemes
with adaptive time step for monodomain reaction-diffusion equations. J. Comput. Appl.
Math. 216 (1): 39-55, 2008.
[57] Henriquez C.S.: Simulating the electrical behavior of cardiac tissue using the bidomain
model. Crit. Rev. Biomed. Eng. 21 : 1-77, 1993.
[58] Henriquez C.S., Muzikant A.L., Smoak C.K.: Anisotropy, fibre curvature, and bath loading
effects on activation in thin and thick cardiac tissue preparations: Simulations in a three-
dimensional bidomain model. J. Cardiovasc. Electrophysiol. 7 (5): 424-444, 1996.
[59] Hodgkin A., Huxley A.: A quantitative description of membrane current and its application
to conduction and excitation in nerve. J. Physiol. (Lond.) 117 : 500-544, 1952.
[60] Hooke N.: Efficient simulation of action potential propagation in a bidomain. Ph. D. Thesis,
Duke Univ., Dept. of Comput. Sci., 1992.
[61] Hooks D.A., Trew M.L.: Construction and validation of a plunge electrode array for three-
dimensional determination of conductivity in the heart. IEEE Trans. Biomed. Eng. 55 (2):
626-635, 2008.
[62] Hoyt R.H., Cohen M.L., Saffitz J.E.: Distribution and three-dimensional structure of inter-
cellular junctions in canine myocardium. Circ. Res. 64 : 563-574, 1989.
[63] Hunter P. et al.: A vision and strategy for the virtual physiological human in 2010 and be-
yond. Phil. Trans. R. Soc. A 368 : 2595-2614, 2010.
[64] Keener J.P.: An eikonal-curvature equation for action potential propagation in myocardium.
J. Math. Biol. 29 : 629-651, 1991.
[65] Keener J.P.: Direct activation and defibrillation of cardiac tissue, J. Theor. Biol. 178 : 313-
324, 1996.
[66] Keener J.P., Panfilov A.V.: Three-Dimensional propagation in the heart: the effects of ge-
ometry and fibre orientation on propagation in myocardium. In Cardiac Electrophysiology:
From Cell to Bedside, D.P. Zipes and J. Jalife (eds.), W.B. Sounders Co, Philadelphia,
pp. 335-347, 1995.
[67] Keener J.P., Panfilov A.V.: The effects of geometry and fibre orientation on propagation
and extrcellular potentials in myocardium. In Computational Biology of the Heart, A.V.
Panfilov, and A.V. Holden (eds.), John Wiley & Sons, New York, Chapter 8, pp. 235-258,
1997.
[68] Keener J.P., Bogar K.: A numerical method for the solution of the bidomain equations in
cardiac tissue. Chaos 8 : 234-241, 1998.
[69] Keener J.P., Sneyd J.: Mathematical Physiology. Springer-Verlag, New York 1998.
[70] Krassowska W., Neu J.C.: Effective boundary conditions for syncytial tissue. IEEE Trans.
Biomed. Eng. 41 : 143-150, 1994.
[71] LeGrice I.J., Smaill B.H., Chai L.Z., Edgar S.G., Gavin J.B., Hunter P.J.: Laminar structure
of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog.
Am. J. Physiol. (Heart Circ. Physiol.) 269 (38): H571-H582, 1995.
[72] LeGrice I.J., Smaill B.H., Hunter P.J.: Laminar structure of the heart: a mathematical model.
Am. J. Physiol. (Heart Circ. Physiol.) 272 (41): H2466-H2476, 1997.
[73] Linge S., Sundnes J., Hanslien M., Lines G.T., Tveito A.: Numerical solution of the bidomain
equations. Phil. Trans. R. Soc. A 367 (1895): 1931-1950, 2009.
Search WWH ::




Custom Search