Biomedical Engineering Reference
In-Depth Information
to give reasonable results. But it is unfortunately very poor when the initial activa-
tion site is modified. To be more stable, the reduced-order model has to be defined on
larger sets of experiments. This point, as well as the application to inverse problems,
will be addressed in future works.
Acknowledgements. The authors wish to thank Michel Sorine for many fruitful discussions, and
Elisa Schenone for the simulations shown in Figs. 4.12 and 4.13.
References
[1] Aehlert B.: ECGs Made Easy. Mosby Jems, Elsevier, third edition, 2006.
[2] Aliev R.R., Panfilov A.V.: A simple two-variable model of cardiac excitation. Chaos, Solitons
& Fractals 3 (7): 293-301, 1996.
[3] Austin T.M., Trew M.L., Pullan A.J.: Solving the cardiac bidomain equations for discontin-
uous conductivities. IEEE Trans. Biomed. Eng. 53 (7): 1265-72, 2006.
[4] Beeler G., Reuter H.: Reconstruction of the action potential of ventricular myocardial fibres.
J. Physiol. (Lond.) 268 : 177-210, 1977.
[5] Bendahmane M., Karlsen K.H.: Analysis of a class of degenerate reaction-diffusion systems
and the bidomain model of cardiac tissue. Netw. Heterog. Media 1 (1): 185-218 (electronic),
2006.
[6] Bordas R., Grau V., Burton R.A.B., Hales P., Schneider J.E., Gavaghan D., Kohl P., Ro-
driguez B.: Integrated approach for the study of anatomical variability in the cardiac purk-
inje system: from high resolution MRI to electrophysiology simulation. In Engineering in
Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE,
pp. 6793-6796. IEEE, 2010.
[7] Boulakia M., Cazeau S., Fernandez M.A., Gerbeau J.-F., Zemzemi N.: Mathematical model-
ing of electrocardiograms: a numerical study. Ann. Biomed. Eng. 38 (3): 1071-1097, 2010.
[8] Boulakia M., Fernandez M.A., Gerbeau J.-F., Zemzemi N.: A coupled system of PDEs and
ODEs arising in electrocardiograms modelling. Applied Math. Res. Exp. 2008(abn002): 28 ,
2008.
[9] Bourgault Y., Coudiere Y., Pierre C.: Existence and uniqueness of the solution for the bido-
main model used in cardiac electrophysiology. Nonlinear Anal. Real World Appl. 10 (1): 458-
482, 2009.
[10] Bourgault Y., Ethier M., Le Blanc V.G.: Simulation of electrophysiological waves with an un-
structured finite element method. M2AN Math. Model. Numer. Anal. 37 (4): 649-661, 2003.
[11] Buist M., Pullan A.: Torso coupling techniques for the forward problem of electrocardiogra-
phy. Ann. Biomed. Eng. 30 (10): 1299-1312, 2002.
[12] Chapelle D., Fernandez M.A., Gerbeau J.-F., Moireau P., Sainte-Maire J., Zemzemi N.: Nu-
merical simulation of the electromechanical activity of the heart. In N. Ayache, H. Delingette,
and M. Sermesant (eds.), Functional Imaging and Modeling of the Heart, volume 5528 of
Lecture Notes in Computer Science, pp. 357-365. Springer, 2009.
[13] Clayton O., Bernus R.H., Cherry E.M., Dierckx H., Fenton F.H., Mirabella L., Panfilov A.V.,
Sachse F.B., Seemann G., Zhang H.: Models of cardiac tissue electrophysiology: Progress,
challenges and open questions. Progress in Biophysics and Molecular Biology 104 (1-3): 22-
48, 2011.
[14] Clements J., Nenonen J., Li P.K.J., Horacek B.M.: Activation dynamics in anisotropic cardiac
tissue via decoupling. Ann. Biomed. Eng. 32 (7): 984-990, 2004.
[15] Colli Franzone P., Pavarino L.F.: A parallel solver for reaction-diffusion systems in compu-
tational electrocardiology. Math. Models Methods Appl. Sci. 14 (6): 883-911, 2004.
[16] Colli Franzone P., Pavarino L.F., Scacchi S., Taccardi B.: Effects of anisotropy and transmural
heterogeneity on the T-wave polarity of simulated electrograms. In N. Ayache, H. Delingette,
Search WWH ::




Custom Search