Biomedical Engineering Reference
In-Depth Information
Merino N, Toledo-Arana A, Vergara-Irigaray M, Valle J, Solano C, Calvo E, Lopez JA, Foster TJ,
Penades JR, Lasa I (2009) Protein A-mediated multicellular behavior in Staphylococcus
aureus . J Bacteriol 191:832-843
Mermel LA, Allon M, Bouza E, Craven DE, Flynn P, O'grady NP, Raad I, Rijnders BJ, Sherertz
RJ, Warren DK (2009) Clinical practice guidelines for the diagnosis and management of
intravascular catheter-related infection: 2009 update by the Infectious Diseases Society of
America. Clin Infect Dis 49:1-45
Moormeier DE, Endres JL, Mann EE, Sadykov MR, Horswill AR, Rice KC, Fey PD, Bayles KW
(2013) Use of microfluidic technology to analyze gene expression during Staphylococcus
aureus biofilm formation reveals distinct physiological niches. Appl Environ Microbiol
79:3413-3424
Mootz JM, Malone CL, Shaw LN, Horswill AR (2013) Staphopains modulate Staphylococcus
aureus biofilm integrity. Infect Immun 81:3227-3238
Novick RP, Geisinger E (2008) Quorum sensing in Staphylococci. Annu Rev Genet 42:541-564
O'gara JP (2007) ica and beyond: biofilm mechanisms and regulation in Staphylococcus
epidermidis and Staphylococcus aureus. FEMS Microbiol Lett 270:179-188
O'neill E, Pozzi C, Houston P, Smyth D, Humphreys H, Robinson DA, O'gara JP (2007)
Association between methicillin susceptibility and biofilm regulation in Staphylococcus
aureus isolates from device-related infections. J Clin Microbiol 45:1379-1388
O'neill E, Pozzi C, Houston P, Humphreys H, Robinson DA, Loughman A, Foster TJ, O'gara JP
(2008) A novel Staphylococcus aureus biofilm phenotype mediated by the fibronectin-binding
proteins, FnBPA and FnBPB. J Bacteriol 190:3835-3850
Ohbayashi T, Irie A, Murakami Y, Nowak M, Potempa J, Nishimura Y, Shinohara M, Imamura T
(2011) Degradation of fibrinogen and collagen by staphopains, cysteine proteases released
from Staphylococcus aureus. Microbiology 157:786-792
Olson ME, King JM, Yahr TL, Horswill AR (2013a) Sialic acid catabolism in Staphylococcus
aureus. J Bacteriol 195:1779-1788
Olson ME, Nygaard TK, Ackermann L, Watkins RL, Zurek OW, Pallister KB, Griffith S,
Kiedrowski MR, Flack CE, Kavanaugh JS, Kreiswirth BN, Horswill AR, Voyich JM
(2013b) Staphylococcus aureus nuclease is an SaeRS-dependent virulence factor. Infect
Immun 81:1316-1324
Opperman TJ, Kwasny SM, Williams JD, Khan AR, Peet NP, Moir DT, Bowlin TL (2009) Aryl
rhodanines specifically inhibit staphylococcal and enterococcal biofilm formation. Antimicrob
Agents Chemother 53:4357-4367
Otto M (2013) Staphylococcal infections: mechanisms of biofilm maturation and detachment as
critical determinants of pathogenicity. Annu Rev Med 64:175-188
Park JH, Lee JH, Cho MH, Herzberg M, Lee J (2012) Acceleration of protease effect on
Staphylococcus aureus biofilm dispersal. FEMS Microbiol Lett 335:31-38
Parsek MR, Singh PK (2003) Bacterial biofilms: an emerging link to disease pathogenesis. Annu
Rev Microbiol 57:677-701
Patel R (2005) Biofilms and antimicrobial resistance. Clin Orthop Relat Rese: 41-7
Payne DE, Martin NR, Parzych KR, Rickard AH, Underwood A, Boles BR (2013) Tannic acid
inhibits Staphylococcus aureus surface colonization in an IsaA-dependent manner. Infect
Immun 81:496-504
Pecharki D, Petersen FC, Scheie AA (2008) Role of hyaluronidase in Streptococcus intermedius
biofilm. Microbiology 154:932-938
Periasamy S, Joo HS, Duong AC, Bach TH, Tan VY, Chatterjee SS, Cheung GY, Otto M (2012)
How Staphylococcus aureus biofilms develop their characteristic structure. Proc Natl Acad Sci
USA 109:1281-1286
Potempa J, Dubin A, Korzus G, Travis J (1988) Degradation of elastin by a cysteine proteinase
from Staphylococcus aureus. J Biol Chem 263:2664-2667
Search WWH ::




Custom Search