Chemistry Reference
In-Depth Information
McMahon, D.J. 1996. Age-gelation of UHT milk: changes that occur during storage, their effect
on shelf life and the mechanism by which age-gelation occurs. In: Heat Treatments and
Alternative Methods, IDF symposium, Vienna, pp. 315-326, International Dairy Federa-
tion, Brussels.
Mason, T.J., Riera, E., Vercet, A., Lopez-Buesa, P. 2005. Application of ultrasound. In:
Emerging Technologies for Food Processing (Da-Wen Sun ed.), pp. 323-351, Elsevier,
Amsterdam.
McIntyre, RT., Parrish, D.B., Fountain, F.E. 1952. Properties of the colostrum of the dairy cow.
VII. pH, buffer capacity and osmotic pressure. J. Dairy Sci. 23, 405-22.
McClements, D.J. 1995. Advances in the application of ultrasound in food analysis and proces-
sing. Trends Food Sci. Technol. 6, 293-299.
McClements, D.J. 1997. Ultrasonic characterization of foods and drinks: principles, methods,
and applications. Crit. Rev. Food Sci. Nutr. 37, 1-46.
McClements, D.J. 1998. Particle sizing of food emulsions using ultrasonic spectrometry: principles,
techniques and applications. In: Ultrasound in Food Processing (M.J.W. Povey, Mason, T.J.
eds.), pp. 85-104, Blackie Academic & Professional, London.
Michalski, M.C., Briard, V. 2003. Fat-related surface tension and wetting properties of milk.
Milchwissenschaft 58, 26-29.
Miles, C.A., van Beek, G., Veerkamp, E.H. 1983. Calculation of thermophysical properties of
foods. In: Physical Properties of Foods (R. Jowitt, F. Escher, B. Hallstr om, H.F.T. Meffert,
W.E.L. Speiss, G. Vos, eds.), pp. 269-312, Applied Science Publishers, London.
Mills, B.L., van de Voort, F.R. 1982. Evaluation of CH stretch measurement for estimation of fat
in aqueous fat emulsions using infrared spectroscopy. J. Assoc. Off. Anal. Chem. 65,
1357-1361.
Miyagawa, K., Namba, A. 1988. Buffer capacity of cow's milk. Nippon Shokuhin kogyo gakkaiski
35, 417-422.
Mohr, W., Brockmann, C. 1930. Surface tension measurements of milk. Milchwiss. Forsch. 10,
72-95.
More, G.R., Prasad, S. 1988. Thermal conductivity of concentrated whole milk. J. Food Proc.
Eng. 10, 105-112.
Moy, C.F., Winder, W.C. 1971. Development of an ultrasonic method for continuously mon-
itoring the fat and solids-not-fat content of fluid milk. J. Dairy Sci. 54, 757(abstr.).
Mucchetti, G., Gatti, M., Neviana, E. 1994. Electrical conductivity changes in milk caused by
acidification: determining factors. J. Dairy Sci. 77 940-944.
Mudgett, R.E., Smith, A.C., Wang, D.I.C., Goldblith, S.A. 1974. Prediction of dielectric proper-
ties in nonfat milk at frequencies and temperatures of interest in microwave processing.
J. Food Sci. 39, 52-54.
Mulder, H., Walstra, P. 1974. The Milk Fat Globule, Commonwealth Agricultural Bureaux,
Farnham Royal, Bucks., England.
Nakai, S., Le, A.C. 1970. Spectrophotometric determination of protein and fat in milk simulta-
neously. J. Dairy Sci. 53, 276-278.
Nelson, V. 1949. The physical properties of evaporated milk with respect to surface tension, grain
formation and color. J. Dairy Sci. 32, 775-785.
Norberg, E. 2005. Electrical conductivity of milk as a phenotypic and genetic indicator of bovine
mastitis: a review. Livest. Prod. Sci. 96, 129-139.
Norberg, E., Hogeveen, H., Korsgaard, I.R., Friggens, N.C., Sloth, K.H.M.N., Løvendahl, P.
2004. Electrical conductivity of milk: ability to predict mastitis status. J. Dairy Sci. 87,
1099-1107.
Nunes, A.C., Bohigas, X., Tejada, J. 2006. Dielectric study of milk for frequencies between 1 and
20 GHz. J. Food Eng. 76, 250-255.
Search WWH ::




Custom Search