Image Processing Reference
In-Depth Information
It could now be written that
(
Ki
2
−− =
ε
)
()
K
′
2
((
K
2
−
i
ε
)
1 2
/
−
K
′
)((
Ki
2
−
ε
)
12
/
+
K
′
)
(2.53)
i
ε
KK
i
�
ε
�
�
-
‚
−
�
-
‚
+
K
+
′
+
K
′
2
K
2
K
which has poles at
K
′=±+
(
K
(
i
ε/2
K
))
giving
∞
1
2
1
(
e
iK r
′
−
e
−
iKr
′
)
KdK
′
′
∫
Gr
(, )
0
=−
lim
4
π
2
ir
(2.54)
ε
�
�
�
i
K
-
‚
KK
i
K
�
ε
-
‚
−
ε
→
0
K
+
+
′
+
K
′
−∞
2
′
2
′
and then use Cauchy's residue theorem
∑
�
∫
fz z
( d
=
2π
i
Residues
C
in the upper-half plane (uhp) of the complex plane and the
m
−
1
1
d
d
�
-
‚
Residue
==
−
a
)!
lim
(
zafz
−
)
m
()
−
1
(
m
1
z
za
→
Hence, the
1
0
i
ε
�
+
�
-
‚
residue =
lim
KK
′
−
fz
()
!
2
K
KK
i
K
ε
′
→+
2
Assuming Jordan's lemma holds, namely, that as
R
→ ∞, ∫
uhp
= 0.
Therefore, residue =
R
1
+
R
2
where
eK
Ki
−
iK r
′
′
R
=
lim
1
+
(
ε/
2
KK
)
+
′
KK
i
ε
′
→+
2
k
e
iK
(
+
(
i
ε
/))
(
2
Kr
K
+
(
i
ε
/
2
K
)
)
R
=−
(2.55)
1
2
Ki
+
(
ε
/
K
)
and as ε → 0,
R
1
→ − (1/2)
e
iKr
.
∞
eKK
−
iK r
′
′
d
′
∫
∞
The second integral is −
[
]
[
]
2 2
If we let
K
′ = −
K
′, then this integral has already been evaluated and so,
R
1
=
R
2
Ki
+
(
ε
/
KKKi
)
+
′
+
(
ε
/
KK
)
−
′
−
1
2
1
1
1
4
e
iKr
(2.56)
Gr
(, )
0
=−
2
π
iR
(
+=
R
)
1
2
4
π
2
i r
π
r








Search WWH ::

Custom Search