Image Processing Reference
In-Depth Information
the dIRAC deltA FunCtIon
This function is very convenient and widely used and best understood in
terms of the following short derivation. If
+∞
+∞
+∞
∫
∫ ∫
fx
()
=
Fk e
()
−
ik x
(
)
d
k
=
fxe
()
ik x
(
)
d
x
�
�
e
− (
ik x
)
d
k
(A.4)
x
x
x
x
x
x
−∞
−∞
−∞
then this gives us the opportunity to define the delta function by writing
+∞
+∞
+∞
∫
∫ ∫
fx
()
=
fx
()(
′
δ
xxx
′ −
)
d
′ =
f xe
()
ik x
x
(
)
d
xe
�
�
−
ik x
(
)
d
k
(A.5)
x
x
−∞
−∞
−∞
leading to the identity
+∞
∫
δ(
xx
′ −=
−∞
)
e
ik xkx
(
′ −
)
d
k
(A.6)
x
x
x
∫
Fx
{( )}
δ
⇒
δ
()
xe
−
ix
ω
d
xe
=
−
i
ω
0
=
1
(A.7)
∞
∞
∫
∫
If
f
=
e
it
−ω
0
then
F
()
ω
=
e
it
ω
×
et
−
it
ω
d
=
e
−−
i
(
ωω
)
t
d
t
=
δ ωω
(
−
)
0
0
0
−
∞
−
∞
If
f
then
= cosω
0
t
∞
1
2
∫
F
()
ω
=
(
e
it
ω
+
eet
−
it
ω
)
−
it
ω
d
(A.8)
0
0
−∞
∞
∞
1
2
1
2
∫
∫
=
e
−−
i
(
ωω
)
t
d
t
+
e
−+
i
(
ωω
)
t
d
t
(A.9)
0
0
−∞
−∞
1
2
1
2
(A.10)
=
δω ω
(
−
)
+
δωω
(
+
)
0
0
examples of Some notations
Using the similarity or scaling theorem, that is,
1
u
a
�
-
‚
()
F.T
¨→
gax
¨¨
G
(A.11)
|
a
|
F.T.
¨¨ ( ) which has equidistant
real zeros at every
u
/
a
=
m
π, where the rect(
x
) function is defined in Figure
A.1 and the Fourier transform of this function is illustrated in Figure A.2.
Fourier transform symmetries can be found in Figure A.3.
then, rect()is
ax
1
/
a
units wide
¨→
1
/
a
sinc
ua
/



Search WWH ::

Custom Search