Image Processing Reference
In-Depth Information
Harada, H., Wall, D., Takenaka, T., and Tanaka, M. 1995. Conjugate gradi-
ent method applied to inverse scattering problem.
IEEE Transactions on
Antennas and Propagation
,
43
(8), 784-792.
Isernia, T., Crocco, L., and D'Urso, M. 2004. New tools and series for forward
and inverse scattering problems in lossy media.
IEEE Geoscience and
Remote Sensing
,
1
(4), 331-337.
Lobel, P., Kleinman, R. E., Pichot, C., BlancFeraud, L., and Barlaud, M. 1996.
Conjugate gradient method for solving inverse scattering with experimen-
tal data.
IEEE Antennas and Propagation Magazine
,
38
(3), 48-51.
Morris, J. B., McGahan, R. K., Schmitz, J. L., Wing, R. M., Pommet, D. A., and
Fiddy, M. A. 1997. Imaging of strongly scattering targets from real data.
IEEE Antennas and Propagation Magazine
,
39
(2), 22-26.
Remis, R. F. and van den Berg, P. M. 2000. On the equivalence of the Newton-
Kantorovich and distorted Born methods.
Inverse Problems
,
16
, L1.
Richmond, J. 1965. Scattering by a dielectric cylinder of arbitrary cross-sec-
tional shape.
IEEE Transactions on Antennas Propagation
,
13
, 334-342.
Rieger, W., Hass, M., Huber, C., Lehner, G., and Rucker, W. M. 1999. Image recon-
struction from real scattering data using an iterative scheme with incor-
porated a priori information.
IEEE Antennas and Propagation Magazine
,
41
(2), 20-36.
Roger, A. 1981. Newton-Kantorovitch algorithm applied to an electromagnetic
inverse problem.
IEEE Transactions Antennas and Propagation
,
29
(2),
232-238.
Shieh, H. M. and Fiddy, M. A. 2006. Accuracy of extrapolated data as a function
of prior knowledge and regularization.
Applied Optics
,
45
, 3283-3288.
Takenaka, H., Harada, H., and Tanaka, M. 1992. On a simple diffraction
tomography technique based on modified Newton-Kantorovich method.
Microwave and Optical Technology Letters
,
5
, 94-97.
Wang, Y. M. and Chew, W. C. 1989. An iterative solution of the two-dimen-
sional electromagnetic inverse scattering problem.
International Journal
of Imaging Systems and Technology
,
1
, 100-108.
Wang, Y. M. and Chew, W. C. 1990. Reconstruction of two-dimensional per-
mittivity distribution using the distorted Born iterative method.
IEEE
Transactions on Medical Imaging
,
9
, 218-225.
Search WWH ::

Custom Search