Biomedical Engineering Reference
In-Depth Information
125. Kuan, Y., Dasi, L., Yoganathan, A.P., Leo, H.: Recent advances in polymeric heart valve
research. Int. J. Biomater. Res. Eng. 1, 1-17 (2011)
126. Ghista, D.N.: Toward an optimum prosthetic trileaflet aortic-valve design. Med. Biol. Eng.
14, 122-129 (1976)
127. Thubrikar, M.J.: The Aortic Valve. CRC Press, Boca Raton (1990)
128. Mercer, J.L., Benedicty, M., Bahnson, H.T.: The geometry and construction of the aortic
leaflet. J. Thorac. Cardiovasc. Surg. 65, 511-518 (1973)
129. Hamid, M.S., Sabbah, H.N., Stein, P.D.: Influence of stent height upon stresses on the cusps
of closed bioprosthetic valves. J. Biomech. 19, 759-769 (1986)
130. Chong, P., Wieting, D., Hwang, H., Kennedy, J.: Stress analysis of normal human aortic
valve leaflets during diastole. Artif. Cells Blood Substit. Biotechnol. 1, 307-321 (1973)
131. Kim, I., Kim, J., Jung, D., Kim, C.S., Min, B.G.: Development of polymer prosthetic heart
valve—fabrication and in vitro test. Seoul J. Med. 32, 35-42 (1991)
132. Lockie, K.J., Butterfield, M., Fisher, J., Juster, N.P., Watterson, K., Davies, G.A.: Geometry
of homograft valve leaflets: effect of dilation of the aorta and the aortic root. Ann. Thorac.
Surg. 56, 125-130 (1993)
133. Swanson, M., Clark, R.E.: Dimensions and geometric relationships of the human aortic
valve as a function of pressure. Circ. Res. 35, 871-882 (1974)
134. Vesely, I.: The evolution of bioprosthetic heart valve design and its impact on durability.
Cardiovasc. Pathol. 12, 277-286 (2003)
135. Peskin,
C.S.,
McQueen,
D.M.:
Mechanical
equilibrium
determines
the
fractal
fiber
architecture of aortic heart valve leaflets. Am. J. Physiol. 266, H319-H328 (1994)
136. Mohammadi, H., Bahramian, F., Wan, W.: Advanced modeling strategy for the analysis of
heart valve leaflet tissue mechanics using high-order finite element method. Med. Eng.
Phys. 31, 1110-1117 (2009)
137. Gallocher,
S.:
Durability
Assessment
of
Polymer
Trileaflet
Heart
Valves.
Florida
International University, Miami (2007)
138. Iwasaki, K., Umezu, M., Iijima, K., Inoue, A., Imachi, K., Ye, C.X.: Development of a
polymer bileaflet valve to realize a low-cost pulsatile blood pump. Artif. Organs 27, 78-83
(2003)
139. Imachi, K., Mabuchi, K., Chinzei, T., Abe, Y., Imanishi, K., Yonezawa, T., et al.: In vitro
and in vivo evaluation of a jellyfish valve for practical use. ASAIO Trans. 35, 298-301
(1989)
140. Smock, D.: Polycarbonate-urethane provides toughness for implanted valve. Plastics Today
(2012)
141. Reade, L.: Nanocages for flexible heart valves. Materials World Magazine (2009)
142. Escobedo, C., Tovar, F., Vila, A., Garcia, J., Suarez, B., Corona, F., et al.: Hydrodynamic
effects of the partial opening of a trileaflet valve. Conf. Proc. IEEE Eng. Med. Biol. Soc. 1,
2896-2899 (2006)
143. Sperati, C.A.: Fluorocarbon polymers, polytetrafluoroethylene (PTFE). In: Rubin, I.I. (ed.)
Handbook of Plastic Materials and Technology, pp. 117-129. Wiley, New York (1990)
144. Coury, A., Stokes, K., Cahalan, P., Slaikeu, P.: Biostability considerations for implantable
polyurethanes. Life Support Syst. 5, 25-39 (1987)
145. Bezuidenhout, D., Zilla, P.: Vascular grafts. In: Wnek, G., Bowlin, G. (eds.) Encyclopaedia
of Biomaterials and Biomedical Engineering. Marcel Dekker, New York (2004)
146. Imamura, E., Kaye, M.P.: Function of expanded-polytetrafluoroethylene laminated trileaflet
valves in animals. Mayo Clin. Proc. 52, 770-775 (1977)
147. Imamura, E., Kaye, M.P., Davis, G.D.: Radiographic assessment of leaflet motion of Gore-
Tex
laminate
trileaflet
valves
and
Hancock
xenograft
in
tricuspid
position
of
dogs.
Circulation 56, 1053-1058 (1977)
148. Ando, M., Imai, Y., Takanashi, Y., Hoshino, S., Seo, K., Terada, M.: Fate of trileaflet equine
pericardial extracardiac conduit used for the correction of anomalies having pulmonic
ventricle-pulmonary arterial discontinuity. Ann. Thorac. Surg. 64, 154-158 (1997)
Search WWH ::




Custom Search