Hardware Reference
In-Depth Information
where x[i]=x(iT
f
), z = e
sT
f
, and according to sampled-data control theory,
the multirate input and output vectors u and y are defined as,
=
δ
[u
1
[i], ···,u
N
[i]]
T
,
= u(kT
y
),u((k +1)T
y
), ···,u((k + N −1)T
y
)]
T
,
u[i]
(3.115)
∆
= y
1
[i], ···,y
N
[i]]
T
,
= y(kT
y
),y((k +1)T
y
), ···,y((k + N −1)T
y
)]
T
,
y[i]
(3.116)
and matrices A, B, C, D can be calculated by
⎡
⎤
A
s
A
N−
s
B
s
A
N−
s
B
s
···
B
s
⎣
⎦
C
s
D
s
0
···
0
∙
¸
A B
C D
C
s
A
s
C
s
B
s
D
s
···
0
=
,
(3.117)
.
.
.
.
···
C
s
A
N−1
C
s
A
N−
s
B
s
C
s
A
N−
s
B
s
···
D
s
s
where P [z
s
]=A
s
,B
s
,C
s
,D
s
is the plant discretized by the zero order hold on
T
y
(= T
u
)andz
s
=e
sT
y
. A
s
=e
A
c
T
N
,B
s
=
R
T
f
/N
0
e
A
c
τ
B
c
dτ.
Toverifytheabove,wehave
x[k +1] = A
s
x[k]+B
s
u[k],
(3.118)
x[k +2] = A
s
x[k +1]+B
s
u[k +1],
= A
s
x[k]+A
s
B
s
u[k]+B
s
u[k +1],
(3.119)
x[k +3] = A
s
x[k +2]+B
s
u[k +2],
= A
s
x[k]+A
s
B
s
u[k]+A
s
B
s
u[k +1]+B
s
u[k +2], (3.120)
.
x[k + N]=A
s
x[k]+A
N−
s
B
s
u[k]+···
+A
s
B
s
u[k + N −2] + B
s
u[k + N −1],
(3.121)
y[k]=C
s
x[k]+D
s
u[k],
(3.122)
y[k +1] = C
s
x[k +1]+D
s
u[k +1],
= C
s
A
s
x[k]+C
s
B
s
u[k]+D
s
u[k +1],
(3.123)
y[k +2] = C
s
x[k +2]+D
s
u[k +2],
= C
s
A
s
x[k]+C
s
A
s
B
s
u[k]+C
s
B
s
u[k +1]+D
s
u[k +2],
(3.124)
.
(3.125)
y[k + N −1] = C
s
A
N−1
s
x[k]+C
s
A
N−
s
B
s
u[k]+
···+ C
s
B
s
u[k + N −2] + D
s
u[k + N −1].
(3.126)



