Biomedical Engineering Reference
In-Depth Information
,
starting from 3.76 kg of 2,4-difluorophenylazide ( 222 ) and 1.54 kg of N -isopropyl-5-
bromophthalimidine ( 223 ).
The one-pot Negishi coupling allowed to obtain 2.29 kg of final compound
221
2.4. CONCLUSION
The Negishi reaction is a convenient, efficient, and versatile synthetic methodology
displaying a broad scope with respect to the two carbon groups to be coupled. The use
of various polyfunctional organozinc derivatives allows the fast preparation of diverse
families of natural products and biologically relevant molecules, via a Pd(0)-
catalyzed cross-coupling reaction, under mild conditions. The zinc is used either as
a cocatalyst in a double metal-catalyzed coupling or as a transmetalating agent: the
relatively low reactivity of the organozinc reagents toward common electrophiles
leads, for example, to regio- and stereodefined chemoselective reactions to access
highly functionalized di-, tri-, and polyenes. Moreover, the successful scale-up from
laboratory to pilot plant scale of Negishi cross-coupling allows the preparation of
multikilogram quantities of bioactive compounds to supply for biological studies.
REFERENCES
1. A. de Meijere, F. Diederich (Eds), Metal-Catalyzed Cross-Coupling Reactions (Second Completely
Revised and Enlarged Edition), Vols 1 and 2, Wiley, 2004.
2. K.-H. Altmann, G. Bold, G. Caravatti, D. Denni, A. Florsheimer, A. Schmidt, G. Rihs, M. Wartmann,
Helv. Chim. Acta 2002 , 85 , 4086-4110.
3. C. Ammer, T. Bach, Chem. Eur. J. 2010 , 16 , 14083-14093.
4. E. Negishi, L. F. Valente, M. Kobayashi, J. Am. Chem. Soc.
1980 , 102 , 3298-3299.
5. R. A. Massy-Westropp, G. D. Reynolds, T. M. Spotswood, Tetrahedron Lett . 1966 , 1939-1946.
6. F. Liu, E. Negishi, J. Org. Chem.
1997 , 62 , 8591-8594.
7. J. G. Ondeyka, D. L. Zink, K. Young, R. Painter, S. Kodali, A. Galgoci, J. Collado, J. R. Tormo, A.
Basilio, F. Vicente, J. Wang, S. B. Singh, J. Nat. Prod.
2006
, 69 , 377-380.
8. Y.-J. Jian, C.-J. Tang, Y. Wu, J. Org. Chem.
2007
, 72 , 4851-4855.
9. R. Zimmer, H.-U. Reissig, Mod. Allene Chem.
2004
, 2 , 847-876.
10. C. J. Elsevier, P. Vermeer, J. Org. Chem.
, 50 , 3042-3045.
11. E. J. Corey, R. K. Bakshi, S. Shibata, J. Am. Chem. Soc. 1987 , 109 , 5551-5553.
12. S. P. Gunasekera, M. Gunasekera, R. E. Longley, G. K. Schulte, J. Org. Chem. 1990 , 55 ,
4912-4915.
13. S. P. Gunasekera, M. Gunasekera, R. E. Longley, G. K. Schulte, J. Org. Chem. 1991 , 56 ,1346.
14. I. Paterson, G. J. Florence, Top. Curr. Chem. 2009 , 286 , 73-119.
15. A. B. Smith, III, T. J. Beauchamp, M. J. LaMarche, M. D. Kaufman, Y. Qiu, H. Arimoto, D. R. Jones,
K. Kobayashi, J. Am. Chem. Soc. 2000 , 122 , 8654-8664.
16. A. Sorg, R. Bruckner, Angew. Chem., Int. Ed. 2004 , 43 , 4523-4526.
17. J.-F. Betzer, F. Delaloge, B. Muller, A. Pancrazi, J. Prunet, J. Org. Chem. 1997 , 62 , 7768-7780.
18. T. Anger, D. J. Madge, M. Mulla, D. Riddall, J. Med. Chem. 2001 , 44 , 115-137.
19. K. M. Graf, M. G. Tabor, M. L. Brown, M. Paige, Org. Lett. 2009 , 11 , 5382-5385.
20. K. E. Drouet, E. A. Theodorakis, Chem. Eur. J. 2000 , 6 , 1987-2001.
21. F. Zeng, E. Negishi, Org. Lett. 2001 , 3 , 719-722.
22. S. Bonazzi, S. Guttinger, I. Zemp, U. Kutay, K. Gademann, Angew. Chem., Int. Ed. 2007 , 46 ,
8707-8710.
1985
Search WWH ::




Custom Search