Biomedical Engineering Reference
In-Depth Information
HCO 2 H
H 2 SO 4
HC
CLi
THF
CO 2 Me
CO 2 Me
MeO 2 C
O
OH
61%
30%
MeO 2 C
O
H
H
O
CO 2 Me
O
OH
COMe
H
H
H
Cedrol
SCHEME 8.39
Synthesis of cedrol via a Rupe rearrangement.
Stork-Clarke synthesis of the cedrenoid sesquiterpene cedrol [174], starting from
dimethyl 5,5-dimethyl-6-oxobicyclo[2.2.2]oct-2-ene-2,3-dicarboxylate (Scheme 8.39).
After a series of steps, (3a R ,4 R ,6a S )-methyl 1,1,4-trimethyl-2-oxooctahydropentalene-
3a-carboxylatewas obtained and treatedwith lithiumacetylide inTHFat
75 Ctoafford
the desired propargylic alcohol in 61% yield, as a result of a very stereoselective
nucleophilic attack on the b -face of the ketone. Next, this propargylic alcohol was
submitted to the Rupe rearrangement using a mixture of formic acid and sulfuric acid
to afford the expected a , b -unsaturated ketone in 30% yield, whose hydrogenation and
base-promoted intramolecular cyclization gave the key intermediate that was subse-
quently transformed to cedrol (Scheme 8.39) [173].
REFERENCES
1. L. Kurti, B. Czako, Strategic Applications of Named Reactions in Organic Synthesis , Elsevier,
New York, 2003 .
2. T.-L. Ho, Tactics of Organic Synthesis , Wiley, New York, 1994 .
3. (a) E. A. Ilardi, C. F. Stivala, A. Zakarian, Chem. Soc. Rev. 2009 , 38 , 3133-3148; (b) M. T. Molina,
J. Marco-Contelles, in J. Cossy. (Ed.), Comprehensive Organic Functional Group Transformations II
(COFGT-II) , Vol. 1, Elsevier, 2004 , pp. 797-888, Chapter 18.
4. (a) S. J. Rhoads, N. R. Raulins, Org. React. 1975 , 22 , 1-252; (b) D. Enders, M. Knopp, R. Schiffers,
Tetrahedron: Asymmetry , 1996 , 7 , 1847-1882; (c) S. M. Allin, R. D. Baird, Curr. Org. Chem. 2001 ,
5 , 395-415; (d) U. Nubbemeyer, Synthesis, 2003 961-1008; (e) A. M. M. Castro, Chem. Rev. 2004 ,
104 , 2939-3002.
5. (a) L. A. Paquette, Chem. Rev.
1995 , 24 , 9-17; (b) L. A. Paquette, Tetrahedron ,
1997 , 53 ,
13971-14020; (c) L. A. Paquette, Eur. J. Org. Chem. 1998 , 1709-1728.
6. L. E. Overman, N. E. Carpenter, Org. React. 2005 , 66 , 1-107.
7. (a) N. A. Petasis, S. P. Lu, Tetrahedron Lett . 1996 , 37 , 141-144; (b) R. J. Ferrier, S. Middleton, Chem.
Rev. 1993 , 93 , 2779-2831.
8. (a) L. E. Overman, Acc. Chem. Res. 1992 , 25 , 352-359; (b) L. E. Overman, L. D. Pennington, J. Org.
Chem. 2003 , 68 , 7143-7157.
9. (a) K. Tomooka, H. Yamamoto, T. Nakai, Liebigs Ann. Chem.
1997 , 1275-1281; (b) D. M. Hodgson,
2003 , 5 , 217-250.
10. (a) D. A. Engel, G. B. Dudley, Org. Biomol. Chem.
K. Tomooka, E. Gras, Top. Organomet. Chem.
2009 , 7 , 4149-4158; (b) S. Swaminathan, K. V.
1971 , 71 , 429-438.
11. (a) K. N. Houk, J. Gonzalez, Y. Li, Acc. Chem. Res.
Narayanan, Chem. Rev.
1995
, 28 , 81-90; (b) V. N. Staroverov, E. R.
Davidson, J. Am. Chem. Soc.
2000
, 122 , 186-187; (c) D. J. Tantillo, R. Hoffmann, J. Org. Chem.
2002
,
67 , 1419-1426.
12. W. von E. Doering, W. R. Roth, Tetrahedron ,
1962
, 18 , 67-74.
 
Search WWH ::




Custom Search