Chemistry Reference
In-Depth Information
cis-diol models of the dynemicin cascade. J. Am. Chem. Soc. 1991, 113,
9878-9880.
[98] Shair, M.D.; Yoon, T.; Chou, T.-C.; Danishefsky, S. J. Enediyne quinone
imines: truncated biologically active dynemicin congeners. Angew. Chem., Int.
Ed. Engl. 1994, 33, 2477-2479; Shair, M.D.; Yoon, T.Y.; Mosny, K.K.;
Chou, T.C.; Danishefsky, S.J. The total synthesis of dynemicin A leading to
development of a fully contained bioreductively activated enediyne prodrug.
J. Am. Chem. Soc. 1996, 118, 9509-9525.
[99] Mastalerz, H.; Doyle, T.W.; Kadow, J.F.; Vyas, D.M. Synthesis of an
esperamicin core analog with an epoxide trigger. Tetrahedron Lett. 1996, 37,
8683-8686.
[100] Mastalerz, H.; Doyle, T.W.; Kadow, J.F.; Vyas, D.M. Synthesis of a hybrid
analog of the esperamicin and dynemicin cores. Tetrahedron Lett. 1996, 37,
8687-8690.
[101] Audrain, H.; Skrydstrup, T.; Ulibarri, G.; Riche, C.; Chiaroni, A.;
Grierson, D.S. Application and mechanistic studies of the [2,3]-Wittig
rearrangement: an approach to the bicyclic core structure of the ''enediyne''
antitumor antibiotics calicheamicin
g 1 I
and esperamicin-A 1 . Tetrahedron
1994, 50, 1469-1502.
[102] Magnus, P.; Eisenbeis, S.A.; Fairhurst, R.A.; Iliadis, T.; Magnus, N.A.;
Parry, D. Synthetic and mechanistic studies on the azabicyclo[7.3.1]enediyne
core and naphtho[2,3-h]quinoline portions of dynemicin A. J. Am. Chem. Soc.
1997, 119, 5591-5605.
[103] Magnus, P.; Eisenbeis, S.A.; Rose, W.C.; Zein, N.; Solomon, W. Studies on
dynemicin. A nonradical cycloaromatization pathway for the azabicyclo
[7.3.1]enediyne core structure initiated by thiolate addition. J. Am. Chem.
Soc. 1993, 115, 12627-12628.
[104] Suffert, J.; Raeppel, S.; Raeppel, F.; Didier, B. Straightforward access to
[6]metacyclophene-based enynes by an inter-intramolecular tandem etheri-
fication through a one-pot double S N Ar reaction. Synlett 2000, 874-876.
[105] Ko¨ nig, B.; Pitsch, W.; Thondorf, I. Synthesis, structure and reactivity of
enediyne macrocycles. J. Org. Chem. 1996, 61, 4258-4261.
[106] Konig, B. Changing the reactivity of enediynes by metal-ion coordination.
Eur. J. Org. Chem. 2000, 381-385; Basak, A.; Mandal, S.; Bag, S.S. Chelation
control in Bergman cyclization. Synthesis and reactivity of enediynyl ligands.
Chem. Rev. 2003, 103, 4077-4094.
[107] Koga, N.; Morokuma, K. Electron acceptor substituents at terminal alkyne
carbons. J. Am. Chem. Soc. 1991, 113, 1907-1911.
[108] Prall, M.; Wittkopp, A.; Fokin, A.A.; Schreiner, P.R. Substituent effects on
the Bergman cyclization of (Z)-1,5-hexadiyne-3-enes: A systematic computa-
tional study. J. Comput. Chem. 2001, 22, 1605-1614.
[109] Wenk, H.H.; Balster, A.; Sander, W.; Hrovat, D.A.; Borden, W.T. Matrix
isolation of perfluorinated p-benzyne. Angew. Chem., Int. Ed. Engl. 2001, 40,
2295-2298.
[110] Klein, M.; Konig, B. Synthesis and thermal cyclization of an enediyne-
sulfonamide. Tetrahedron 2004, 60, 1087-1092.
[111] Rawat, D.S.; Zaleski, J.M. Syntheses and thermal reactivities of symme-
trically and asymmetrically substituted acyclic enediynes: steric control of
Bergman cyclization temperatures. Chem. Commun. 2000, 2493-2494.
 
Search WWH ::




Custom Search