Chemistry Reference
In-Depth Information
[5] Rotundi, A.; Rietmeijer, F.J.M.; Brucato, J.R.; Colangeli, L.; Mennella, V.;
Palumbo, P.; Bussoletti, E. Refractory comet dust analogues by laser
bombardment and arc discharge production: A reference frame for ''dusty
experiments'' on-board ROSETTA. Planet. Space Sci. 2000, 48, 371-384.
[6] Nuth, III, J.A.; Rietmeijer, F.J.M.; Hill, H.G.M. Condensation processes in
astrophysical environments: The composition and structure of cometary
grains. Meteoritics Planet. Sci. 2002, 37, 1579-1590.
[7] Rotundi, A.; Brucato, J.R.; Colangeli, L.; Ferrini, G.; Mennella, V.; Palomba,
E.; Palumbo, P. Production, processing and characterization techniques for
cosmic dust analogues. Meteoritics Planet. Sci. 2002, 37, 1623-1635.
[8] Rietmeijer, F.J.M.; Nuth, III, J.A. Experimental astromineralogy: Circum-
stellar ferromagnesiosilica dust in analogs and natural samples. In Dust in the
Solar System and Other Planetary Systems. COSPAR Colloquia Series 15.
Green, S.F.; Williams, I.P., McDonnell, J.A.M., McBride, N., Eds. Pergamon
Elsevier Science, 2002, 333-339.
[9] Henning, Th.; Salama, F. Carbon in the universe. Science 1998, 282,
2204-2210.
[10] Shearer, C.K.; Papike, J.J.; Rietmeijer, F.J.M. The planetary sample suite and
environments of origin. In Planetary Materials, Revs. Mineral. 36. Papike, J.J.,
Ed. The Mineralogical Society of America, Washington, DC, 1998, 1-1-1.28.
[11] Rietmeijer, F.J.M. Mixed layering in disordered Sri Lanka graphite. Carbon
1991, 29, 669-675.
[12] Rietmeijer, F.J.M. Are crystalline C-(H-O-N) carbons the elusive meteoritic
carbynes? Meteoritics 1993, 28, 242-245.
[13] Bundy, F.P.; Bassett, W.A.; Weathers, M.S.; Hemley, R.J.; Mao, H.K.;
Goncharov, A.F. The pressure-temperature phase diagram and transforma-
tion diagram for carbon: Updated through 1994. Carbon 1996, 34, 141-153.
[14] Whittaker, A.G.; Wolten, G.M. Carbon: A suggested new hexagonal crystal
form. Science 1972, 178, 54-56.
[15] Nelson, L.S.; Whittaker, A.G.; Tooper, B. The formation of new polymorphs
of carbon and fluid flow patterns by irradiating solid carbons with a CO 2 laser.
High Temp. Sci. 1972, 4, 445-477.
[16] Setaka, N.; Sekikawa, Y. Chaoite, a new allotropic form of carbon, produce by
shock compression. J. Am. Ceram. Soc. 1980, 63, 238-239.
[17] Sokolowska, A.; Olszyna, A. Decomposition of hydrocarbons. In Carbyne and
Carbynoid Structures. Heimann, R.B.; Evsyukov, S.E.; Kavan, L., Eds. Kluwer
Academic Publishers, Dordrecht, Boston, London, 1999, 117-131.
[18] Vdovykin, G.P. Ureilites. Space Sci. Revs 1970, 10, 483-510.
[19] Kasatochkin, V.I.; Korshak, V.V.; Kudryavtsev, Yu.P.; Sladkov, A.M.;
Sterenberg, I.E. On crystalline structure of carbyne. Carbon 1973, 11, 70-72.
[20] Gilkes, K.W.R.; Pillinger, C.T. Carbon — How many allotropes associated
with meteorites and impact phenomena? In Carbyne and Carbynoid Structures.
Heimann, R.B.; Evsyukov, S.E.; Kavan, L., Eds. Kluwer Academic Publishers,
Dordrecht, Boston, London, 1999, 17-30.
[21] Whittaker, A.G.; Watts, E.J.; Lewis, R.S.; Anders, E. Carbynes: Carriers of
primordial noble gases in meteorites. Science 1980, 209, 1512-1514.
[22] El Goresy, A.; Donnay, G. A new allotropic form of carbon from the Ries
Crater. Science 1968, 161, 363-364.
 
Search WWH ::




Custom Search