Chemistry Reference
In-Depth Information
[35]
(a) Bylaska, E.J.; Weare, J.H.; Kawai, R. Development of bond-length
alternation in very large carbon rings: LDA pseudopotential results. Phys. Rev.
B 1998, 58(12), R7488-R7491. (b) Bylaska, E.J.; Kawai, R.; Weare, J.H. From
small to large behavior: The transition from the aromatic to the Peierls regime
in carbon rings. J. Chem. Phys. 2000, 113(15), 6096-6106. (c) Saito, M.;
Okamoto, Y. Second-order Jahn-Teller effect on carbon 4N þ
2 member ring
clusters. Phys. Rev. B 1999, 60(12), 8939-8942. (d) Torelli, T.; Mitas, L.
Electron correlation in C 4N þ 2 carbon rings: Aromatic versus dimerized struc-
tures. Phys. Rev. Lett. 2000, 85(8), 1702-1705. (e) Liviotti, E.; Ubertini, F.;
Erdo ¨ s, P. Bond configuration in the Peierls-Hubbered model of small ring-
shaped molecules. J. Chem. Phys. 2000, 111(6), 2392-2400.
[36] Handschuh, H.; Gantefo¨ r, G.; Kessler, B.; Bechthold, P.S.; Eberhardt, W.
Stable configurations of carbon clusters: chains, rings, and fullerenes. Phys.
Rev. Lett. 1995, 74(7), 1095-1098.
[37] Kohno, M. Photoelectron spectroscopy of carbon clusters and metal/carbon
binary clusters. Dissertation for Dr. Sci. Tokyo Metropolitan University 1997,
p. 108.
[38] (a) Saito, M.; Sugino, O. Vibrational fine structures in photoelectron spectra of
carbon ring clusters. Phys. Rev. B 2000, 61(19), 12674-12677. (b) Saito, M.;
Miyamoto, Y. Theoretical identification of the smallest fullerene, C 20 . Phys.
Rev. Lett. 2001, 87(3), 035503-1-4. (c) Saito, M.; Sugino, O. Anomalous
temperature effect on the broad asymmetric Franck-Condon photoelectron
spectrum of the C 10 monocyclic ring cluster. Phys. Rev. A 2001, 63(5),
053201-1-5.
[39] Prinzbach, H.; Weiler, A.; Landenberger, P.; Wahl, F.; Wo¨ rth, J.; Scott, L.T.;
Gelmont, M.; Olevano, D.; V. Issendorf, B. Gas-phase production and photo-
electron spectroscopy of the smallest fullerene, C 20 . Nature (London) 2000, 407,
60-63.
[40] (a) Kaizu, K.; Kohno, M.; Suzuki, S.; Shiromaru, H.; Moriwaki, T.; Achiba, Y.
Neutral carbon clusters distribution upon laser vaporization. J. Chem.
Phys. 1997, 106(23), 9954-9956. (b) Ohara, M.; Suwa. M.; Ishigaki, T.;
Shiromaru, H.; Achiba, Y; Kra ¨ tschmer, W. Resonance-enhanced multiphoton
electron detachment (REMPED) spectra of C 10 and C 11 . J. Chem. Phys.
1998, 109(4), 1329-1333.
[41] (a) Wakabayashi, T.; Momose, T.; Shida, T.; Shiromaru, H.; Ohara, M.;
Achiba, Y. Preferential formation of C 10 upon tandem irradiation of graphite
with IR and UV laser pulses. J. Chem. Phys. 1997, 107(4), 1152-1155.
(b) Wakabayashi, T.; Momose, T.; Shida, T. Mass spectroscopic studies of
laser ablated carbon clusters as studied by photoionization with 10.5 eV
photons under vacuum. J. Chem. Phys. 1999, 111(14), 6260-6263. (c) Kato, Y.;
Wakabayashi, T.; Momose, T. Preferential formation of neutral C 10 upon laser
vaporized in He gas as studied by photoionization mass spectroscopy with
10.5 eV photons. J. Chem. Phys. 2003, 118(12), 5390-5394. (d) Kato, Y.;
Wakabayashi, T.; Momose, T. A mass spectroscopic study of laser vaporized
graphite in H 2 and D 2 gases: the stability of C 2n H 2 (n ¼ 2-5) and C 10 . Chem.
Phys. Lett. 2004, 386(4-6), 279-285.
[42] Van Orden, A.; Provencal, R.A.; Keutsch, F.N.; Saykally, R.J. Infrared laser
spectroscopy of jet-cooled carbon clusters: The 5 band of linear C 9 . J. Chem.
Phys. 1996, 105(15), 6111-6116.
 
Search WWH ::




Custom Search