Geology Reference
In-Depth Information
194. Zindler, A., H. Staudigel, and R. Batiza, Isotope and trace element geochemistry of
young Pacific seamounts: implications for the scale of upper mantle heterogeneity.
Earth Planet. Sci. Lett ., 1984. 70 : p. 175-195.
195. Allegre, C.J. and D.L. Turcotte, Implications of a two-component marble-cake
mantle. Nature , 1986. 323 : p. 123-127.
196. Ringwood, A.E., Composition and Petrology of the Earth's Mantle . 1975, New
York: McGraw-Hill. 618p.
197. Hofmann, A.W. and S.R. Hart, An assessment of local and regional isotopic
equilibrium in the mantle. Earth Planet. Sci. Lett ., 1978. 38 : p. 4-62.
198. van Keken, P.E. and S. Zhong, Mixing in a 3D spherical model of present day
mantle convection. Earth Planet. Sci. Lett ., 1999. 171 : p. 533-547.
199. Kellogg, L.H. and D.L. Turcotte, Mixing and the distribution of heterogeneities
in a chaotically convecting mantle. J. Geophys. Res ., 1990. 95 : p. 421-432.
200. Davies, G.F., Comment on 'Mixing by time-dependent convection' by U.
Christensen. Earth Planet. Sci. Lett ., 1990. 98 : p. 405-407.
201. van Keken, P.E., E. Hauri, and C.J. Ballentine, Mantle mixing: the generation,
preservation and destruction of mantle heterogeneity. Annu. Rev. Earth Planet. Sci .,
2002. 30 : p. 493-525.
202. Spandler, C., et al. , Phase relations and melting of anhydrous K-bearing eclogites
from 1200 to 1600 C and 3 to 5 GPa. J. Petrol. , 2008. 49 : p. 771-795.
203. Davies, G.F., Stirring geochemistry in mantle convection models with stiff plates
and slabs. Geochim. Cosmochim. Acta , 2002. 66 : p. 3125-3142.
204. Kogiso, T., M.M. Hirschmann, and P.W. Reiners, Length scales of mantle
heterogeneities and their relationship to ocean island basalt geochemistry. Geochim.
Cosmochim. Acta , 2004. 68 : p. 345-360.
205. Sobolev, A.V., et al. , The amount of recycled crust in sources of mantle-derived
melts. Science , 2007. 316 : p. 412-417.
206. Yaxley, G.M. and D.H. Green, Reactions between eclogite and peridotite: mantle
refertilisation by subduction of oceanic crust. Schweiz. Mineral. Petrog. Mitt ., 1998.
78 : p. 243-255.
207. Pertermann, M. and M.M. Hirschmann, Partial melting experiments on a
MORB-like pyroxenite between 2 and 3 GPa: constraints on the presence of
pyroxenite in basalt source regions from solidus location and melting rate.
J. Geophys. Res ., 2003. 108 : doi:10.1029/2000JB000118.
208. Spiegelman, M. and J.R. Reynolds, Combined dynamic and geochemical evidence
for convergent melt flow beneath the East Pacific Rise. Nature , 1999. 402 :
p. 282-285.
209. Sobolev, A.V., et al. , An olivine-free mantle source of Hawaiian shield basalts.
Nature , 2005. 434 : p. 590-597.
210. Takahashi, E., K. Nakajima, and T.L. Wright, Origin of the Columbia River basalts:
melting model of a heterogeneous plume head. Earth Planet. Sci. Lett ., 1998. 162 :
p. 63-80.
211. Salters, V.J.M. and H.J.B. Dick, Mineralogy of the mid-ocean-ridge basalt source
from neodymium isotopic composition of abyssal peridotites. Nature , 2002. 418 :
p. 68-72.
212. Hart, S.R., et al. , Mantle plumes and entrainment: isotopic evidence. Science , 1992.
256 : p. 517-520.
213. Ito, E. and J.J. Mahoney, Melting a high 3 He/ 4 He source in a heterogeneous mantle.
Geochem. Geophys. Geosyst. , 2006. 7 : doi:10.1029/2005GC001158.
214. Allegre, C.J., T. Staudacher, and P. Sarda, Rare gas systematics: formation of the
atmosphere, evolution and structure of the earth's mantle. Earth. Planet. Sci. Lett .,
1987. 81 : p. 127-150.
Search WWH ::




Custom Search