Agriculture Reference
In-Depth Information
the contrary, Balogh (2006) observed no improvement in control of citrus canker or citrus
bacterial spot with the combination of bacteriophages with copper-mancozeb.
13.7
Bacteriophage-based disease control of plant diseases is a quickly developing fi eld of
research. A wide range of strategies has been employed to increase control effi cacy. Phages
are applied alone as well as part of an integrated disease management approach. Phage treat-
ment is currently used in greenhouses and production fi elds in Florida as a part of a standard
integrated management program for tomato bacterial spot control (Momol et al., 2002).
Owing to their increasing effi cacy and contribution to sustainable agriculture, phage-based
products are likely to gain a bigger share in the bactericide market in the future.
Summary
13.8
References
Adams MH, 1959. Bacteriophages. New York: Interscience Publishers.
Arthurs SP, Lacey LA, Behle RW, 2006. Evaluation of spray-dried lignin-based formulations and adju-
vants as solar protectants for the granulovirus of the codling moth, Cydia pomonella (L). Journal of
Invertebrate Pathology 93, 88-95.
Balogh B, 2002. Strategies of improving the effi cacy of bacteriophages for controlling bacterial spot of
tomato . MS Thesis, Gainesville, FL: University of Florida.
Balogh B, 2006. Characterization and use of bacteriophages associated with citrus bacterial pathogens for
disease control . PhD Dissertation, Gainesville, FL: University of Florida.
Balogh B, Jones JB, Momol MT, Olson SM, Obradovic A, King P, Jackson LE, 2003. Improved effi cacy
of newly formulated bacteriophages for management of bacterial spot on tomato. Plant Disease 87,
949-954.
Basim H, Stall RE, Minsavage GV, Jones JB, 1999. Chromosomal gene transfer by conjugation in the
plant pathogen Xanthomonas axonopodis pv. vesicatoria. Phytopathology 89, 1044-1049.
Beckerich A, Hauduroy P, 1922. Le bactériophage dans le traitment de la fi èvre typhoïde. Comptes Rendus
des Séances de la Société de Biologie 86, 168.
Behle RW, McGuire MR, Shasha BS, 1996. Extending the residual toxicity of Bacillus thuringiensis with
casein-based formulations. Journal of Economic Entomology 89, 1399-1405.
Bender CL, Cooksey DA, 1986. Indigenous plasmids in Pseudomonas syringae pv. tomato : Conjugative
transfer and role in copper resistance. Journal of Bacteriology 165, 534-541.
Bender CL, Cooksey DA, 1987. Molecular cloning of copper resistance genes from Pseudomonas syrin-
gae pv. tomato . Journal of Bacteriology 169, 470-474.
Bender CL, Malvick DK, Conway KE, George S, Cooksey DA, 1990. Characterization of pXv10A, a
copper resistance plasmid in Xanthomonas campestris pv. vesicatoria . Applied and Environmental
Microbiology 56, 170-175.
Bergamin Filho A, Kimati H, 1981. Estudos sobre um bacteriofago isolado de Xanthomonas campestris .
II. Seu emprego no controle de X. campestris e X. vesicatoria . Summa Phytopathologica 7, 35-43.
Brunoghe R, Maisin J, 1921. Essais de therapeutique au moyen du bacteriophage du staphylocoque.
Comptes Rendus des Séances de la Société de Biologie 85, 1020-1021.
Canteros BI, 1999. Copper resistance in Xanthomonas campestris pv. citri . In: Mahadevan A, ed. Plant
Pathogenic Bacteria - Proceedings of the 9th International Conference , 26-29 August, 1996. Chennai,
India: Centre for Advanced Study in Botany, University of Madras, 455-459.
Civerolo EL, 1972. Interaction between bacteria and bacteriophages on plant surfaces and in plant tissues.
In: Maas Geesteranus HP, ed. Proceedings of the Third International Conference of Plant Pathogenic
Bacteria , April 14-21, 1971. Wageningen: Centre for Agricultural Publishing and Documentation,
25-37.
Civerolo EL, 1982. Disease management by cultural practices and environmental control. In: Mount MS,
Lacy GH, eds. Phytopathogenic Prokaryotes. New York: Academic Press, 343-360.
Civerolo EL, Keil HL, 1969. Inhibition of bacterial spot of peach foliage by Xanthomonas pruni bacte-
riophage. Phytopathology 59, 1966-1967.
Search WWH ::




Custom Search