Agriculture Reference
In-Depth Information
Livesey, G. (2005) Low-glycaemic diets and health: implications for obesity. Proc. Nutr. Soc.
64(1):105-113.
Ludwig, D.S. (2000) Dietary glycemic index and obesity. J. Nutr. 130(Suppl. 2):S280-S283.
Lynch, J., et al. (2000) The caudal-related homeodomain protein Cdx1 inhibits prolifera-
tion of intestinal epithelial cells by down-regulation of D-type cyclins. J. Biol. Chem.
275(6):4499-4506.
Marquis, G.S., et al. (2003) An overlap of breastfeeding during late pregnancy is associated
with subsequent changes in colostrum composition and morbidity rates among Peruvian
infants and their mothers. J. Nutr. 133(8):2585-2591.
Mathews, C.K., van Holde, K.E., and Ahern, K.G. (1999) 13. Carbohydrate Metabolism
I: Anaerobic Processes in Generating Metabolic Energy. Biochemistry . New York:
Prentice Hall.
Maurus, R., et al. (2005) Structural and mechanistic studies of chloride induced activation of
human pancreatic alpha-amylase. Protein Sci. 14(3):743-755.
McCall, A.L., et al. (2004) Cerebral glucose metabolism in diabetes mellitus. Eur. J.
Pharmacol. 490(1-3):147-158.
McClellan, W.S. and DuBois, E.F. (1930) Clinical calorimetry XLV. Prolonged meat diets
with a study of kidney function and ketosis. J. Biol. Chem. 87:651-668.
McDonald, M.C. and Henning, S.J. (1992) Synergistic effects of thyroxine and dexametha-
sone on enzyme ontogeny in rat small intestine. Pediatr. Res. 32(3):306-311.
Montgomery, R.K., et al. (1991) Lactose intolerance and the genetic regulation of intestinal
lactase-phlorizin hydrolase. FASEB J. 5:2824-2832.
Naim, H.Y., Sterchi, E.E., and Lentze, M.J. (1988) Structure, biosynthesis, and glycosylation
of human small intestinal maltase-glucoamylase. J. Biol. Chem. 263:19709-19717.
Naumoff, D.G. (2007) Structure and evolution of the mammalian maltase-glucoamylase and
sucrase-isomaltase genes. Mol. Biol. (Mulekulyarnaya Biologiya) 41(6):962-973.
Nichols, B.L., et al. (2003) The maltase-glucoamylase gene: common ancestry to sucrase-
isomaltase with complementary starch digestion activities. Proc. Natl. Acad. Sci. U. S.
A. 100(3):1432-1437.
Ouwendijk, J., et al. (1996) Congenital sucrase-isomaltase deficiency. Identification of a glu-
tamine to proline substitution that leads to a transport block of sucrase-isomaltase in a
pre-Golgi compartment. J. Clin. Invest. 97(3):633-641.
Ouwendijk, J., et al. (1998) Analysis of a naturally occurring mutation in sucrase-isomaltase:
glutamine 1098 is not essential for transport to the surface of COS-1 cells. Biochim.
Biophys. Acta 1406(3):299-306.
Pereira, B. and Sivakami, S. (1991) A comparison of the active site of maltase-glucoamylase
from the brush border of rabbit small intestine and kidney by chemical modification
studies. Biochem. J. 274 (Pt. 2):349-354.
Peters, A., et al. (2004) The selfish brain: competition for energy resources. Neurosci. Biobehav.
Rev. 28(2):143-180.
Propsting, M.J., Jacob, R., and Naim, H.Y. (2003) A glutamine to proline exchange at amino
acid residue 1098 in sucrase causes a temperature-sensitive arrest of sucrase-isomaltase
in the endoplasmic reticulum and cis-Golgi. J. Biol. Chem. 278(18):16310-16314.
Quezada-Calvillo, R., et al. (2007) Luminal substrate “brake” on mucosal maltase-glucoamy-
lase activity regulates total rate of starch digestion to glucose. J. Pediatr. Gastroenterol.
Nutr. 45(1):32-43.
Quezada-Calvillo, R., et al. (2008) Luminal starch substrate ''brake'' on maltase-glucoamy-
lase activity is located within the glucoamylase subunit. J. Nutr. 138:685-692.
Richards, A.B., et al. (2002) Trehalose: a review of properties, history of use and human toler-
ance, and results of multiple safety studies. Food Chem. Toxicol. 40(7):871-898.
Ritz, V., et al. (2003) Congenital sucrase-isomaltase deficiency because of an accumulation of
the mutant enzyme in the endoplasmic reticulum. Gastroenterology 125(6):1678-1685.
Search WWH ::




Custom Search