Chemistry Reference
In-Depth Information
various diamines by a conventional two-stage synthesis. The resulting poly(ether
imide)s had inherent viscosities in the range of 0.50-0.81 dL . g -1 . GPC measure-
ments revealed that the polymers exhibited number-average molecular weight and
weight-average molecular weight up to 57,000 and 130,000, respectively. All the
polymers showed typical amorphous diffraction patterns. Almost all of the
poly(ether imide)s showed excellent solubility and readily dissolved in various
solvents such as N-methyl-2-pyrrolidinone, N,N-dimethylacetamide (DMAc),
N,N-dimethylformamide, pyridine, cyclohexanone, tetrahydrofuran and chloro-
form. These polymers had glass transition temperatures in the range of 226-
262
C. Thermogravimetric analysis showed that all polymers were stable, with
10% weight loss recorded above 441
°
C in nitrogen. Tough and flexible polymer
films could be easily obtained by solution casting from the DMAc solution. These
polymer films had tensile strength of 80-116 MPa and tensile modulus of 1.7-2.7
GPa. The polyimides derived from six new dianhydrides have good solubility,
thermal stability and mechanical properties.
°
REFERENCES
1. M. K. Ghosh and K. L. Mittal (Eds.), Polyimides: Fundamentals and Applications , Marcel Dek-
ker, New York (1996).
2. D. Wilson, H. D. Stenzenberger and P. M. Hergenrother (Eds.), Polyimides , Chapman and Hall,
New York (1990).
3. P. M. Hergenrother, N. T. Wakelyn and S. J. Havens, J. Polym. Sci., Part A: Polym. Chem. 25,
1093 (1987).
4. T. Asanuma, H. Oikawa, Y. Okawa, W. Yamashita, M. Matsuo and A. Yamaguchi, J. Polym.
Sci., Part A: Polym. Chem. 32, 2111 (1994).
5. S. Matsuo and K. Mitsuhashi, J. Polym. Sci., Part A: Polym. Chem. 32, 1969 (1994).
6. Y. Imai, N. N. Malder and M. Kakimoto, J. Polym. Sci., Part A: Polym. Chem. 22, 2189 (1984).
7. D. J. Liaw, B. Y. Liaw, L. J. Li, B. Sillion, R. Mercier, R. Thiria and H. Sekiguchi, Chem. Ma-
ter. 10, 734 (1998).
8. X. Sun, Y. K. Yang and F. Lu, Macromolecules 31, 4291 (1998).
9. I. K. Spiliopoulos and J. A. Mikroyannidis, Macromolecules 31, 515 (1998).
10. M. H. Yi, W. Huang, M. Y. Jin and K. Y. Choi, Macromolecules 30, 5606 (1997).
11. D. J. Liaw and B. Y. Liaw, Polymer 40, 3183 (1999).
12. J. G. Wirth, in Discovery and Development of Polyetherimides in High Performance Polymers:
Their Origin and Development , R. B. Seymour and G. S. Kirshenbaum (Eds.), Elsevier, Am-
sterdam (1986).
13. M. Eashoo, Z. Wu, A. Zhang, D. Shen, C. Tse, F. W. Harris, S. Z. D. Cheng, H. K. Gardner and
S. B. Hsiao, Macromol. Chem. Phys . 195, 2207 (1994).
14. F. W. Harris and L. H. Lanier, in Structure-Solubility Relationships, F. W. Harris and R. B.
Seymour (Eds.), p.183, Academic Press, New York (1977).
15. R. Sinta, R. A. Minns, R. A. Gaudiana and H. G. Rogers, Macromolecules 20, 2374 (1987).
16. K. H. Becker and H. W. Schmidt, Macromolecules 25, 6784 (1992).
17. D. J. Liaw, B. Y. Liaw and M. Q. Jeng, Polymer 39, 1597 (1998).
18. D. J. Liaw, B. Y. Liaw, J. R. Chen and C. M. Yang, Macromolecules 32, 6860 (1999).
19. D. J. Liaw, B. Y. Liaw and Y. S. Chen, Polymer 40, 4041 (1999).
20. D. J. Liaw and B. Y. Liaw, Macromol. Chem. Phys. 199, 1473 (1998).
Search WWH ::




Custom Search