Biology Reference
In-Depth Information
Takahashi, M., Kanuka, H., Fujiwara, H., Koyama, A., Hasegawa, M., Miura, M., and Iwatsubo, T.
(2003). Phosphorylation of alpha-synuclein characteristic of synucleinopathy lesions is recapitu-
lated in alpha-synuclein transgenic Drosophila. Neurosci. Lett. 336, 155-158.
Teleman, A. A., Chen, Y. W., and Cohen, S. M. (2005). 4E-BP functions as a metabolic brake used
under stress conditions but not during normal growth. Genes Dev. 19, 1844-1848.
Tempel, B. L., Livingstone, M. S., and Quinn, W. G. (1984). Mutations in the dopa decarboxylase
gene affect learning in Drosophila. Proc. Natl. Acad. Sci. USA 81, 3577-3581.
Tettweiler, G., Miron, M., Jenkins, M., Sonenberg, N., and Lasko, P. F. (2005). Starvation and
oxidative stress resistance in Drosophila are mediated through the eIF4E-binding protein, d4E-BP.
Genes Dev. 19, 1840-1843.
Tofaris, G. K., and Spillantini, M. G. (2007). Physiological and pathological properties of alpha-
synuclein.
Cell. Mol. Life Sci. 64, 2194-2201.
Trinh, K., Moore, K., Wes, P. D., Muchowski, P. J., Dey, J., Andrews, L., and Pallanck, L. J. (2008).
Induction of the phase II detoxification pathway suppresses neuron loss in Drosophila models of
Parkinson's disease.
J. Neurosci. 28, 465-472.
Trinh, K., Andrews, L., Krause, J., Hanak, T., Lee, D., Gelb, M., and Pallanck, L. (2010). Decaffein-
ated coffee and nicotine-free tobacco provide neuroprotection in Drosophila models of Parkin-
son's disease through an NRF2-dependent mechanism.
J. Neurosci. 30, 5525-5532.
Twig, G., Elorza, A., Molina, A. J., Mohamed, H., Wikstrom, J. D., Walzer, G., Stiles, L.,
Haigh, S. E., Katz, S., Las, G.,
. (2008a). Fission and selective fusion govern mitochondrial
segregation and elimination by autophagy.
et al
EMBO J. 27, 433-446.
Twig, G., Hyde, B., and Shirihai, O. S. (2008b). Mitochondrial fusion, fission and autophagy as a
quality control axis: The bioenergetic view.
Biochim. Biophys. Acta 1777, 1092-1097.
Valente, E. M., Abou-Sleiman, P. M., Caputo, V., Muqit, M. M., Harvey, K., Gispert, S., Ali, Z., Del
Turco, D., Bentivoglio, A. R., Healy, D. G.,
et al
. (2004). Hereditary early-onset Parkinson's
Science 304, 1158-1160.
Vaux, D. L., and Silke, J. (2003). HtrA2/Omi, a sheep in wolf's clothing. Cell 115, 251-253.
Ved, R., Saha, S., Westlund, B., Perier, C., Burnam, L., Sluder, A., Hoener, M., Rodrigues, C. M.,
Alfonso, A., Steer, C., et al. (2005). Similar patterns of mitochondrial vulnerability and rescue
induced by genetic modification of alpha-synuclein, parkin, and DJ-1 in Caenorhabditis elegans.
J. Biol. Chem. 280, 42655-42668.
Venderova, K., Kabbach, G., Abdel-Messih, E., Zhang, Y., Parks, R. J., Imai, Y., Gehrke, S., Ngsee, J.,
Lavoie, M. J., Slack, R. S., et al. (2009). Leucine-Rich Repeat Kinase 2 interacts with Parkin, DJ-1
and PINK-1 in a Drosophila melanogaster model of Parkinson's disease. Hum. Mol. Genet. 18,
4390-4404.
Venken, K. J., and Bellen, H. J. (2005). Emerging technologies for gene manipulation in Drosophila
melanogaster. Nat. Rev. 6, 167-178.
Verstreken, P., Ly, C. V., Venken, K. J., Koh, T. W., Zhou, Y., and Bellen, H. J. (2005). Synaptic
mitochondria are critical for mobilization of reserve pool vesicles at Drosophila neuromuscular
junctions.
disease caused by mutations in PINK1.
Neuron 47, 365-378.
Vives-Bauza, C., Zhou, C., Huang, Y., Cui, M., de Vries, R. L., Kim, J., May, J., Tocilescu, M. A.,
Liu, W., Ko, H. S.,
et al
. (2010). PINK1-dependent recruitment of Parkin to mitochondria in
Proc. Natl. Acad. Sci. USA 107, 378-383.
Wang, D., Qian, L., Xiong, H., Liu, J., Neckameyer, W. S., Oldham, S., Xia, K., Wang, J., Bodmer, R.,
and Zhang, Z. (2006). Antioxidants protect PINK1-dependent dopaminergic neurons in Dro-
sophila.
mitophagy.
Proc. Natl. Acad. Sci. USA 103, 13520-13525.
Wang, D., Tang, B., Zhao, G., Pan, Q., Xia, K., Bodmer, R., and Zhang, Z. (2008). Dispensable role of
Drosophila ortholog of LRRK2 kinase activity in survival of dopaminergic neurons.
Mol. Neuro-
degener. 3, 3.
Search WWH ::




Custom Search