Biology Reference
In-Depth Information
Hood, C. L., Abraham, J., Boyington, J. C., Leung, K., Kwong, P. D., and Nabel, G. J. (2010).
Biochemical and structural characterization of cathepsin L-processed Ebola virus glycoprotein:
implications for viral entry and immunogenicity. J. Virol. 84, 2972-2982.
Howard, M. W., Travanty, E. A., Jeffers, S. A., Smith, M. K., Wennier, S. T., Thackray, L. B., and
Holmes, K. V. (2008). Aromatic amino acids in the juxtamembrane domain of severe acute
respiratory syndrome coronavirus spike glycoprotein are important for receptor-dependent virus
entry and cell-cell fusion. J. Virol. 82, 2883-2894.
Hrobowski, Y. M., Garry, R. F., and Michael, S. F. (2005). Peptide inhibitors of dengue virus and
West Nile virus infectivity. Virol. J. 2, 49.
Hsu, M., Zhang, J., Flint, M., Logvinoff, C., Cheng-Mayer, C., Rice, C. M., and McKeating, J. A.
(2003). Hepatitis C virus glycoproteins mediate pH-dependent cell entry of pseudotyped retrovi-
ral particles.
Proc. Natl. Acad. Sci. USA 100, 7271-7276.
Huang, I. C., Bosch, B. J., Li, F., Li, W., Lee, K. H., Ghiran, S., Vasilieva, N., Dermody, T. S.,
Harrison, S. C., Dormitzer, P. R., Farzan, M., Rottier, P. J.,
. (2006). SARS coronavirus, but
not human coronavirus NL63, utilizes cathepsin L to infect ACE2-expressing cells.
et al
J. Biol. Chem.
281, 3198-3203.
Hunt, J. S., and Romanelli, F. (2009). Maraviroc, a CCR5 coreceptor antagonist that blocks entry of
human immunodeficiency virus type 1.
Pharmacotherapy 29, 295-304.
Hunter, E. (1997). Viral entry and receptors.
“Retroviruses” (J. Coffin, S. Hughes, and H. Varmus,
eds.), pp. 71-120. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
Jeetendra, E., Robison, C. S., Albritton, L. M., and Whitt, M. A. (2002). The membrane-proximal
domain of vesicular stomatitis virus G protein functions as a membrane fusion potentiator and can
induce hemifusion.
In
J. Virol. 76, 12300-12311.
Jeetendra, E., Ghosh, K., Odell, D., Li, J., Ghosh, H. P., and Whitt, M. A. (2003). The membrane-
proximal region of vesicular stomatitis virus glycoprotein G ectodomain is critical for fusion and
virus infectivity.
J. Virol. 77, 12807-12818.
Ji, C., Zhang, J., Dioszegi, M., Chiu, S., Rao, E., Derosier, A., Cammack, N., Brandt, M., and
Sankuratri, S. (2007). CCR5 small-molecule antagonists and monoclonal antibodies exert potent
synergistic antiviral effects by cobinding to the receptor. Mol. Pharmacol. 72, 18-28.
Jin, M., Park, J., Lee, S., Park, B., Shin, J., Song, K. J., Ahn, T. I., Hwang, S. Y., Ahn, B. Y., and
Ahn, K. (2002). Hantaan virus enters cells by clathrin-dependent receptor-mediated endocytosis.
Virology 294, 60-69.
Jinno-Oue, A., Oue, M., and Ruscetti, S. K. (2001). A unique heparin-binding domain in the
envelope protein of the neuropathogenic PVC-211 murine leukemia virus may contribute to its
brain capillary endothelial cell tropism. J. Virol. 75, 12439-12445.
Joshi, S. B., Dutch, R. E., and Lamb, R. A. (1998). A core trimer of the paramyxovirus fusion protein:
parallels to influenza virus hemagglutinin and HIV-1 gp41. Virology 248, 20-34.
Kabat, D., Kozak, S. L., Wehrly, K., and Chesebro, B. (1994). Differences in CD4 dependence for
infectivity of laboratory-adapted and primary patient isolates of human immunodeficiency virus
type 1.
J. Virol. 68, 2570-2577.
Kadlec, J., Loureiro, S., Abrescia, N. G., Stuart, D. I., and Jones, I. M. (2008). The postfusion
structure of baculovirus gp64 supports a unified view of viral fusion machines.
Nat. Struct. Mol.
Biol. 15, 1024-1030.
Kaletsky, R. L., Simmons, G., and Bates, P. (2007). Proteolysis of the Ebola virus glycoproteins
enhances virus binding and infectivity.
J. Virol. 81, 13378-13384.
Kang, Y., Stein, C. S., Heth, J. A., Sinn, P. L., Penisten, A. K., Staber, P. D., Ratliff, K. L., Shen, H.,
Barker, C. K., Martins, I., Sharkey, C. M., Sanders, D. A.,
. (2002). In vivo gene transfer using
a nonprimate lentiviral vector pseudotyped with Ross River Virus glycoproteins.
et al
J. Virol. 76,
9378-9388.
Search WWH ::




Custom Search