Environmental Engineering Reference
In-Depth Information
z 1
z 1
z 1
y
(
t
+
j
)=
F j
(
))
y
(
t
)+
E j
(
)
B
(
)
Δ u
(
t
d
+
j
1
)
(5.46)
z 1
z 1
z 1
+
E j
(
)
H
(
)
Δ p
(
t
d
+
j
1
)+
E j
(
)
w
(
t
+
j
)
z
1
As the last term associated with noise E j
(
)
w
(
t
+
j
)
only has terms in the future,
the best prediction is
z 1
z 1
z 1
y
(
t
+
j
|
t
)=
F j
(
))
y
(
t
)+
G j
(
)
Δ u
(
t
d
+
j
1
)+
L j
(
)
Δ p
(
t
d
+
j
),
(5.47)
1
z 1
z 1
z 1
z 1
z 1
z 1
where G j
.
Thus, the set of N -ahead predictions starting from d steps in the future is:
(
)=
E j
(
)
B
(
)
and L j
(
)=
E j
(
)
H
(
)
z 1
z 1
z 1
y
(
t
+
d
+
1
|
t
)=
F d + 1
(
))
y
(
t
)+
G d + 1
(
)
Δ u
(
t
)+
L d + 1
(
)
Δ p
(
t
)
z 1
z 1
z 1
y
(
t
+
d
+
2
|
t
)=
F d + 2
(
))
y
(
t
)+
G d + 2
(
)
Δ u
(
t
+
1
)+
L d + 1
(
)
Δ p
(
t
+
1
)
.
z
1
z
1
z
1
).
(5.48)
The coefficients of F j , G j and L j can be efficiently calculated by recursive methods
[16] or by matrix calculations [17].
These predictions can be expressed in matrix notation as follows:
y
(
t
+
d
+
N
|
t
)=
F d + N
(
))
y
(
t
)+
G d + N
(
)
Δ u
(
t
+
N
)+
L d + N
(
)
Δ p
(
t
+
N
G
z
1
z
1
z
1
=
+
(
)
(
)+
(
)
(
)+
(
)
,
y
Gu
F
y
t
Δ u
t
1
L
p
(5.49)
where
T
y
=[
y
(
t
+
d
|
t
),...,
y
(
t
+
d
+
N
|
t
)]
T
u
=[
Δ u
(
t
),...,
Δ u
(
t
+
N
1
)]
(5.50)
T
p
=[
Δ p
(
t
),...,
Δ p
(
t
+
N
1
)]
g 0
0
...
0
g 1
g 0
...
0
G
=
(5.51)
.
.
.
. . .
g N 1 g N 2
...
g 0
z 1
(
G d + 1
(
)−
)
g 0
z
z 1
g 1 z 1
z 2
(
G d + 2
(
)−
g 0
)
G
z
1
(
)=
(5.52)
.
z
1
g 1 z
1
g N 1 z N
1
z N
(
G d + N
(
)−
g 0
−...−
)
T
z
1
z
1
L d + 1
(
)
F d + 1
(
)
z 1
z 1
L d + 2
(
)
F d + 2
(
)
z
1
z
1
L
(
)=
,
F
(
)=
(5.53)
.
L d + N
.
z
1
z
1
(
)
F d + N
(
)
=
,...,
Parameters g i , i
0
N
1arethecoefficients of G N 1 and can be obtained by
solving (5.43) for E j and F j .
Search WWH ::




Custom Search