Environmental Engineering Reference
In-Depth Information
[51] Bharati MH, Liu, J, MacGregor JF (2004) Image texture analysis: methods and comparisons.
Chemom Intell Lab Syst 72:57-71
[52] Gosselin R, Rodrigue D, Gonzalez-N unez R, Duchesne C (2009) Potential of hyperspectral
imaging for quality control of polymer blend films. Ind Eng Chem Res 48:3033-3042
[53] Van de Wouwer G (1998) Wavelets for Multiscale Texture Analysis. PhD thesis, University
of Antwerp, Antwerp, Belgium
[54] Haralick RM, Dinstein I (1973) Textural features for image classification. IEEE Trans Syst
Man Cybern 3:610-621
[55] Esbensen KH, Kvaal K, Hjelmen KH (1996) The AMT approach in chemometrics first for-
ays. J Chemom 10:569-590
[56] Liu JJ, MacGregor JF (2007) On the extraction of spectral and spatial information from
images. Chemom Intell Lab Syst 85:119-130
[57] Kaspar MH, Ray WH (1993) Dynamic PLS modeling for process control. Chem Eng Sci
48:3447-3461
[58] Lakshminarayanan S, Shah SL, Nandakumar K (1997) Modeling and control of multivariate
processes: dynamic PLS approach. AIChE J 43:2307-2322
[59] Liu JJ, MacGregor JF (2008) Froth-based modeling and control of flotation processes. Miner
Eng 21:642-651
[60] Gebhardt JE, Tolley WK, Ahn JH (1993) Colour measurement of minerals and mineralised
froth. Miner Metall Process 10:96-99
[61] Moolman DW, Aldrich C, Van Deventer JSJ, Stange WW (1994) Digital image processing
as a tool for on-line monitoring of froth in flotation plants. Miner Eng 7:1149-1164
[62] Oestreich JM, Tolley WK, Rice DA (1995) The development of a color sensor system to
measure mineral compositions. Miner Eng 8:31-39
[63] Hat onen J, Hy otyniemi H, Miettunen J, Carlsson LE (1999) Using image information and
partial least squares method to estimate mineral concentrations in mineral flotation. In: Pro-
ceedings of the Second International Conference on Processing and Manufacturing of Ma-
terials (IPMM'99), Honolulu, Hawaii, July 10-15 1:459-464
[64] Bonifazi G, Serranti S, Volpe F, Zucco R. (1999) Characterisation of flotation froth color and
structure by machine vision. In: Geovision 99, May 6-7, Liege, Belgium
[65] Bonifazi G, Massacci P, Meloni A (2000) Prediction of complex sulphide flotation perfor-
mances by a combined 3D fractal and colour analysis of the froths. Miner Eng 13:737-746
[66] Quenouille M. (1949) Approximate tests of correlation in time series. J Royal Statist Soc
B11:18-44
[67] Tukey JW (1958) Bias and confidence in not quite large samples. Ann Math Statist 29:614
[68] Efron B (1979) Bootstrap methods: another look and the jackknife. Ann Statist 7:1-26
[69] Moolman DW, Eksteen JJ, Aldrich C, Van Deventer JSJ (1996) The significance of flotation
froth appearance for machine vision control. Int J Miner Process 48:135-158
[70] Hargrave JM, Hall ST (1997) Diagnosis of concentrate grade and mass flowrate in tin flota-
tion from colour and surface texture analysis. Miner Eng 10:613-621
[71] Sadr-Kazemi N, Cilliers JJ (1997) An image processing algorithm for measurement of flota-
tion froth bubble size and shape distribution. Miner Eng 10:1075-1083
[72] Cipriano A, Guarini M, Vidal R, Soto A, Sepulveda C, Mery D, Briseno H (1998) A real
time visual sensor for supervision of flotation cells. Miner Eng 11:489-499
[73]
Wang W, Bergholm F, Yang B (2003) Froth delineation based on image classification. Miner
Eng 16:1183-1192
[74]
Beucher S, Meyer F (1993) The morphological approach to segmentation: the watershed
transformation. In: Dougherty E (Ed), Mathematical Morphology in Image Processing, Mar-
cel Dekker, New York, 433-481
[75]
Aldrich C, Moolman DW, Eksteen JJ, Van Deventer JSJ (1995) Characterization of flotation
processes with self-organizing neural nets. Chem Eng Commun 139:25-39
[76]
Nguyen KK, Thornton AJ (1995) The application of texture based image analysis techniques
in froth flotation. In: Proceedings of DICTA95, Brisbane, Australia 613-618
Search WWH ::




Custom Search