Environmental Engineering Reference
In-Depth Information
Table 2.1 Standard oxidation-
reduction (redox) potentials a
Au Au 3 3e
1.498
O 2 4H 4e 2H 2 O
1.229
Pt Pt 2 2e
1.2
Pd Pd 2 2e
0.987
Ag Ag e
0.799
2Hg Hg 2
2
2e
0.788
Fe 3 e Fe 2
0.771
O 2 2H 2 O 4e 4OH
0.401
Cu Cu 2 2e
0.337
Sn 4 2e Sn 2
0.15
2H 2e H 2
0.000
Pb
Pb 2
2e
0.126
Sn
Sn 2
2e
0.136
Ni
Ni 2
2e
0.250
Co
Co 2
2e
0.277
Cd
Cd 2
2e
0.403
Fe Fe 2 2e
0.440
Cr Cr 3 3e
0.744
Zn Zn 2 2e
0.763
Al Al 3 3e
1.662
Mg Mg 2 2e
2.363
Na Na e
2.714
K K e
2.925
a 25°C, volts vs. normal hydrogen electrode.
Electrode potential values are given and are
invariant (e.g., Zn Zn 2 2e, and Zn 2
2e Zn, are identical and represent zinc in
equilibrium with its ions with a potential of
0.763 V vs. normal hydrogen electrode).
Source : A. J. de Bethune and N. A. S. Loud,
Standard Aqueous Electrode Potentials and
Temperature Co-efficients at 25 ° C , Clifford
A. Hampel, Skokie, IL, 1964.
of the reactions in the table have been represented as reduction reactions, follow-
ing the international convention. Accordingly, the redox potentials above hydro-
gen have a positive sign and those below hydrogen have a negative sign. The
sign will change if any reaction is considered for a reverse reaction, i.e., an oxida-
tion reaction. Referring again to the copper-zinc cell in Fig. 2.2, the standard
single-electrode potential for the copper electrode where reduction takes place
is
0.34 V (SHE), whereas for the zinc electrode, which undergoes an oxidation
 
Search WWH ::




Custom Search