Database Reference
In-Depth Information
Table 1. Expansion rules
Rule
Description
if 1. 〈
C D
 ,
≥ 〉 ∈
,
n
(  , x is not indirectly k -blocked, and 2. {
x
〈 ≥ 〉 〈 ≥ 〉
C
,
,
n D
,
,
,
n
}
  ,
( )
x
³
then 
( )
x
( )
x
∪ 〈 ≥ 〉 〈 ≥ 〉
{
C
,
,
n D
,
,
,
n
}
if 1. 〈
C D
 ,
≥ 〉 ∈
,
n
(  , x is not indirectly k -blocked, and 2. {
x
〈 ≥ 〉 〈 ≥ 〉 ∩
C
,
,
n D
,
,
,
n
}
( ) =
x
³
, where ∈ 〈 ≥ 〉 〈 ≥ 〉
then 
( )
x
( )
x
{ }
C
C
{
C
,
,
n D
,
,
,
n
}
if 1. 〈∃
R C
.
,
≥ 〉
, (or 〈∃
n
T d
.
,
≥ 〉
, ) Î( x , x is not k -blocked. 2. x has no R n
n
³, -neighbor(resp. no T
³, -neighbor) y s.t. 〈 ≥ 〉
C
, ,
n
n
(resp.〈 ≥ 〉
, , )Î( y ,
then create a new node y with ( ,
d
n
x y
) = {
〈 ≥ 〉 and (
R
,
,
n
}
y
) = {
〈 ≥ 〉 (resp. with ( ,
C
,
,
n
}
x y
) = { ,
〈 ≥ 〉 and (
T
,
n
}
y
) = { ,
〈 ≥ 〉 ).
d
,
n
}
if 1. 〈∀
R C
.
,
≥ 〉
, (or 〈∀
n
T d
.
,
≥ 〉
, ) Î( x , x is not indirectly k -blocked. 2. x has an R
,
n
-neighbor y (resp. a T
-neigh-
,
y , where
bor) with 〈 ≥ 〉
C
, , (resp. 〈 ≥ 〉
n
d
, , ) Ï (
n
n
= 1
− +
n
ε ,
then 
(
y
)
(
y
)
∪ 〈 ≥ 〉 (resp. 
{
C
,
,
n
}
(
y
)
(
y
)
∪ 〈 ≥ 〉 )
{ ,
d
,
n
}
+
if 1. 〈∀
R C
.
,
≥ 〉 ∈
,
n
(  with Trans R
x
(
) , x is not indirectly k -blocked, and 2. x has an R
,
-neighbor y with 〈∀
R C
.
,
≥ 〉 ∉
,
n
(  ,
y
where
n
= 1
− +
n
ε ,
then
(
y
)
(
yy
∪ 〈∀
{
R C
.
,
≥ 〉
,
n
}
*
+
if 1. 〈∀
S C
.
,
≥ 〉 ∈
,
n
(  , x is not indirectly k -blocked, and 2. there is some R , with Trans R
x
(
) and R
S
, 3. x has an R
,
(  , where
-neighbor y with 〈∀
R C
.
,
≥ 〉 ∉
,
n
y
n
= 1
− +
n
ε ,
then
(
y
)
(
yy
∪ 〈∀
{
R C
.
,
≥ 〉
,
n
}
³ ³
if 1. 〈≥
2 ,
S
≥ 〉 ∈
,
n
 , x is not k -blocked, 2. #{
( )
x
N
|
〈 ≥ 〉 ∈ 
R
,
,
n
( ,
x x
)} < 2
,
if
I
if
then introduce new nodes, s.t. #
{
x
N
|
〈 ≥ 〉 ∈
R
,
,
n
( ,
x x
)}
2
if
I
if
if 1. 〈≤
1 ,
S
≥ 〉 ∈
,
n
 , x is not indirectly k -blocked, 2. #{
( )
x
N
|
〈 ≥ − + 〉 ε 
R
,
,1
n
( ,
x x
)} > 1
and 3. there exist x l
if
I
if
and x k , with no x
» / , 4. x l is neither a root node nor an ancestor of x k .
x
l
k
then (i) 
(
x
)
(
x
)
(
x
)
(ii) 
( ,
x x
)
( ,
x x
)
( ,
x x
)
(iii) ( ,
x x l → ∅ , (
)
x l → ∅ (iv) set x
)
» / for all
x
k
k
l
k
k
l
if
k
x if with x
» / .
x
if
l
.. if 1. 〈≤
1 ,
S
≥ 〉 ∈
,
n
 , 2. #{
( )
x
N
|
〈 ≥ − + 〉 ε 
R
,
,1
n
( ,
x x
)} > 1
and 3. there exist x l and x k , both root nodes, with no
if
I
if
» / ,
then 1.
x
x
l
k
〉 ∅
, i. if the edge
x
k ,
x
does not exist, create it with (
x
,
x
) =
(
x
)
(
x
)
(
x
)
2. For all edges 〈
x x
l ,
,
k
k
k
l
ii.
(
x
,
x
′〉 → 〈
)
(
x
,
x
′〉 ∪ 〈
)
(
x x
,
′〉
)
does not exist, create it with (
〈 ′
x x k
,
〉 ∅
) =
. 3. For all edges 〈 ′
x x , , i. if the edge 〈 ′
x x k
,
,
k
k
l
ii.
〉 → 〈
〉 ∪ 〈
x l Æ and remove all edges to/from x l . 5. Set ′′
x / for all ¢ x with
(
x x
,
)
(
x x
,
)
(
x x
,
)
. 4. Set (
) =
x
k
k
l
′′
x
x / and set x
» .
x
l
N q
if 1. C
D
Î and 2. {
〈¬ ≥ − + 〉 〈 ≥ 〉 ∩
C
,
,1
n
ε
,
D
,
,
n
}
( ) =
x
for n
N
,
for some ∈ 〈¬ ≥ − + 〉 〈 ≥ 〉
then
( )
x
( )
x
{ }
C
C
{
C
,
,1
n
ε
,
D
,
,
n
}
.
Example 4. Figure 1 shows a 2-complete and clash-free completion forest for , i.e.,  Î ccf 2 (
,
)
where  o
= {
〈 ≥
C
,
, 0.8 ,
〉 〈∃
R C
.
,
, 0.8 }
〉 ,  d
= { ,
〈 ≥ 〉 ,  R
d
,1 }
= {
〈 ≥
R
,
, 0.8 }
〉 ,  T
= { ,
〈 ≥ 〉 . In  , o 1
T
,1 }
2 tree-blocks T o 4
2 , and o 1 tree-blocks o 5 . The
and o 4 are 2-tree equivalent, and o 1 is a 2-witness of o 4 . T o 1
2 is directly blocked by o 3 in T o 1
2 -tree, indicated by the dashed line.
node o 6 in T o 4
 
Search WWH ::




Custom Search