Database Reference
In-Depth Information
(
( .
t A t A
,
. )
( . ) max(
t A
( . ),
t A
(
t A
. ))
( .
t s
t s
.
))
µ
α µ
=
µ
µ
β
=
≠ ∗ ⇔
EQ
T
Z
Z
T T
T
(
µ
( .
t A t A
,
. )
α µ
( . ) max(
t A
=
µ
( . ),
t A
µ
(
t A
. ))
β
( .
t
s
=
t s
.
≠ ∗ ∨
))
EQ
R
Z
Z
R R
R
(
( .
t A t A
,
. )
( . ) max(
t A
( . ),
t A
( . ))
t A
( .
t s
t s
.
))
µ
α µ
=
µ
µ
β
=
≠ ∗ ∨
EQ
S
Z
Z
S
S
S
(
µ
( .
t A t A
,
. )
α µ
( . ) max(
t A
=
µ
( . ),
t A
µ
(
t A
. ))
β
( .
t s
=
t s
.
≠ ∗ ⇔
))
EQ
T
Z
Z
T
T
T
(
( .
t A t A
,
. )
( . ) max(
t A
( .
t
A
),
(
t A
. ))
( .
t s
t s
.
))
µ
α µ
=
µ
µ
β
=
≠ ∗ ∨
EQ
R
Z
Z
R R
R
(
µ
( .
t A t A
,
. )
α µ
( . ) max
t A
=
(
µ
( . ),
t A
µ
(
t A
. ))
β
( .
t s
=
t s
.
≠ ∗ ⇔
))
EQ
Y
Z
Z
Y Y
Y
f
s sameDB
( .
t A
,
µ
( . ), . )
t A t s
(
R
Y
)
Z
α β
,
fs sameDB
fs same
( .
t A
,
µ
( . ), . )
t A t s
(
R
(
S
DB
T ))
Z
α β
,
α β
,
fs anyDB
α β , is associative. i.e. Z
fs anyDB
fs anyDB
fs anyDB
fs anyDB
Theorem: È
= ∪
(
R
S
)
T
= ∪
R
(
S
T
)
α β
,
α β
,
α β
,
α β
,
fs anyDB
α β , can have either non-`*' or `*' as its source value.
Case 1: Resultant tuple with its source value non-`*' (say `s'). It can be shown by using the procedure
similar to that of previous proof that:
Proof: Tuples in the result of È
fs anyDB
fs anyDB
fs anyDB
fs anyDB
( .
t A
,
µ
( . ), . )
t A t s
(
R
S
)
T
( .
t A
,
µ
( . )
t A
, . )
t s
∈ ∪
R
(
S
T
)
α β
,
α β
,
α β
,
α β
,
Z
Z
Case 2: Resultant tuple with `*' value of its source attribute.
Proof: Let S, R and T be FTS relations of same arity and domain of i th attribute of S,R,T is the same.
In case of anyDB option, result must have non-`*' source attribute value.
fs anyDB
= ∪
fs anyDB
= ∪ α β
Let FTS relation Let FTS relation X
(
R
S
)
and FTS relation Y
S
T
) . Hence,
α β
,
( .
t A
,
µ
µ
( . ), )
t A
∗ ∈ ⇔
∗ ∈
Z
Z
fs sameDB
( .
t A
,
( . ), )
t A
(
X
T
)
α β
Z
,
f
f
f
t A
.
(
X
T
)
µ
( . )
t A
β
( .
t s
= ∗ ∨
t s
.
t s
. ))
π A
α β π
,
α β
,
,
A
,
α β
,
Z
X
T
f
f
f
f
f
t A
.
(
R
S
T
)
µ
( . )
t A
β
( .
t s
= ∗ ∨
t s
.
t
.
s
t s
. ))
π
α β π
α β π
A
,
α β
,
,
A
,
α β
,
,
A
,
α β
,
Z
R
S
T
f
f
f
t A
.
(
R
Y
)
µ
( . )
t A
β
( .
t s
= ∗ ∨
t
.
s
t s
. ))
π
α β π
A
,
α β
,
,
A
,
α β
,
Z
R
Y
fs sameDB
( .
t A
,
µ
µ
( . ), )
t A
∗ ∈
(
R
Y
)
Z
α β
,
fs sameDB
fs sameDB
( .
t A
,
( . ),
t A
∗ ∈
)
(
R
(
S
T
)).
Z
α β
,
α β
,
fs sameDB
α β
fs anyDB
α β , and are associative, however, they are mutually non-associative.
Although È
and È
,
fs sameDB
fs anyDB
fs sameDB
fs anyDB
Theorem: (
R
S
)
T
≠ ∪
R
(
S
T
)
α β α β α β α β
Proof: This can be proved using a counter example given in Figure 7.
Similarly properties related with other FTS relational operations can also be proved.
,
,
,
,
Search WWH ::




Custom Search