Chemistry Reference
In-Depth Information
With alcohols, the SO 4 radical reacts by H-abstraction rather than by ET
(Eibenberger et al. 1978). These reactions are rather slow (e.g., with t BuOH k
= 8
10 5 dm 3 mol 1 s 1 ; Redpath and Willson 1975; Buxton et al. 1999), and
thus SO 4 is considerably more selective than OH (Gilbert et al. 1999). SO 4
is always generated from S 2 O 8 2 , and like H 2 O 2 this peroxide readily reacts with
reducing radicals such as derived from primary and secondary alcohols thereby
inducing chain reactions with complex kinetics (Schuchmann and von Sonntag
1988; Ulanski and von Sonntag 1999) but also with those derived from the py-
rimidine nucleobases (Chap. 10.2).
×
References
Alegre ML, Geronés M, Rosso JA, Bertolotti SG, Braun AM, Mártiere DO, Gonzales MC (2000) Kinetic
study of the reactions of chlorine atoms and Cl 2 •− radical anions in aqueous solutions. I. Reac-
tion with benzene. J Phys Chem A 104:3117−3125
Alfassi ZB, Prütz WA, Schuler RH (1986) Intermediates in the oxidation of azide ion in acidic solu-
tions. J Phys Chem 90:1198−1203
Alfassi ZB, Huie RE, Neta P, Shoute LCT (1990) Temperature dependence of the rate constants for
reaction of inorganic radicals with organic reductants. J Phys Chem 94:8800−8805
Alfassi ZB, Dhanasekaran T, Huie RE, Neta P (1998) On the reactions of CO 3 •− radicals with NO x radi-
cals. Radiat Phys Chem 56:475−482
Anbar M, Thomas JK (1964) Pulse radiolysis studies of aqueous sodium chloride solutions. J Phys
Chem 68:3829−3835
Augusto O, Bonini MG, Amanso AM, Linares E, Santos CCX, de Menezes SL (2002) Nitrogen dioxide
and carbonate radical anion: two emerging radicals in biology. Free Rad Biol Med 32:841−859
Baxendale JH, Bevan PLT, Stott DA (1968) Pulse radiolysis of aqueous thiocyanate and iodide solu-
tions. Trans Faraday Soc 64:2389−2397
Behar D (1974) Pulse radiolysis study of aqueous hydrogen cyanide and cyanide solutions. J Phys
Chem 78:2660−2663
Behar D, Fessenden RW (1972) An electron spin resonance investigation of the reactions in irradi-
ated aqueous solutions of hydrogen cyanide and the cyanide ion. J Phys Chem 76:3945−3950
Bielski BHJ, Allen AO (1977) Radiation chemistry of aqueous cyanide ion. J Am Chem Soc
99:5931−5934
Bisby RH, Johnson SA, Parker AW, Tavender SM (1998) Time−resolved resonance Raman spectros-
copy of the carbonate radical. J Chem Soc Faraday Trans 94:2069−2072
Brusa MA, Churio MS, Grela MA, Bertolotti SG, Previtali CM (2000) Reaction volume and reaction
enthalpy upon aqueous peroxodisulfate dissociation: S 2 O 8 2 2SO 4 •− . Phys Chem Chem Phys
2:2383−2387
Buxton GV, Elliot AJ (1986) Rate constant for reaction of hydroxyl radicals with bicarbonate ions.
Radiat Phys Chem 27:241−243
Buxton GV, Sellers RM (1973) Acid dissociation constant of the carboxyl radical. Pulse radiolysis
studies of aqueous solutions of formic acid and sodium formate. J Chem Soc Faraday Trans 1
69:555−559
Buxton GV, Stuart CR (1995) Re−evaluation of the thiocyanate dosimeter for pulse radiolysis. J Chem
Soc Faraday Trans 91:279−281
Buxton GV, Bydder M, Salmon GA (1998) Reactivity of chlorine atoms in aqueous solution, part I. The
equilibrium Cl + Cl = Cl 2 •− . J Chem Soc Faraday Trans 94:653−657
Buxton GV, Bydder M, Salmon GA (1999) The reactivity of chlorine atoms in aqueous solution, part
II. The equilibrium SO 4 •− + Cl
= Cl + SO 4 2 . Phys Chem Chem Phys 1:269−273
Büchler H, Bühler RE, Cooper R (1976) Pulse radiolysis of aqueous cyanide solutions. Kinetics of the
transient OH and H adducts and subsequent rearrangements. J Phys Chem 80:1549−1553
Search WWH ::




Custom Search