Information Technology Reference
In-Depth Information
2 u 2 GG
iuGF a +
iuG F a +
F a F a
4
π
2
π
2
π
2 1
2 u
v 2
i 1
v GF b
3
2
3
2
GG
+
4
π
+
2
π
2 u
+
i 1
v G F b +
3
2
F b F b
+
2
π
2 u
+
2
v 2
i
v GF c
3
2
3
2
1
2 u
1
2 u
GG
+
4
π
+
2
π
+
i
v G F c
3
2
1
2 u
F c F c
+
+
+
2
π
(11)
In a similar manner to Ando's method, differentiating with respect to G and G gives
the following conditions for g
(
x
,
y
)
to be the least inconsistent gradient image.
3
2
3
2
1
2 u
1
2 u
G
iuF a
F b
F c =
2
u 2
v 2
6
π
(
+
)
2
π
2
π
i
(
+
v
)
2
π
i
(
+
v
)
0
(12)
3
2
3
2
1
2 u
1
2 u
2
u 2
v 2
6
π
(
+
)
G
+
2
π
iuF a +
2
π
i
(
+
v
)
F b +
2
π
i
(
+
v
)
F c =
0
(13)
The sum and difference of these two expressions are given respectively as follows:
2
u 2
v 2
G )+
F a )
6
π
(
+
)(
G
+
2
π
iu
(
F a
3
2
3
2
1
2 u
1
2 u
F b )+
F c )=
+
2
π
i
(
+
v
)(
F b
2
π
i
(
+
v
)(
F c
0
(14)
2
u 2
v 2
G )+
F a )
6
π
(
+
)(
G
2
π
iu
(
F a
+
3
2
3
2
1
2 u
1
2 u
F b )+
F c )=
+
2
π
i
(
+
v
)(
F b +
2
π
i
(
+
v
)(
F c +
0
(15)
Equation (14) consists only of real parts, while Equation (15) consists of imaginary
terms only. For g to be least inconsistent, both equations must equal zero. Summing
these two expressions, gives the following condition:
i
G
(
u
,
v
)=
G 1 (
u
,
v
) ,
(16)
π (
u 2
+
v 2
)
3
 
Search WWH ::




Custom Search