Civil Engineering Reference
In-Depth Information
Borzilov, V. A. (1989), Physical-mathematical modeling of processes determining runoff
of long-lived radionuclides from watersheds in 30-km zone of Chernobyl NPP,
J. Meteorol. and Hydrol. , 1 , 5-13 (in Russian).
Bouma, J. (1981), Soil morphology and preferential flow along macropores, Agric. Water
Manag ., 3 , 235-250.
Burkart, M. R., D. W., Kolpin and D. E. James (1999), Assessing groundwater vulnerability
to agrichemical contamination in the Midwest US, Water Sci. and Technol. , 39 (3), 103-112.
Carter, A. D., R. C. Palmer, and R. A. Monkhouse (1987), Mapping the vulnerability of
groundwater to pollution from agricultural practice, particularly with respect to nitrate,
Atti Int. Conf.Vulnerab. of Soil and Groundwater to Pollutants, RIVM Proc. and Inf ., 38 ,
333-342.
Ciang, W. H., and W. Kinzelbach (2001), 3D Groundwater Modeling with PMWin ,
Springer-Verlag Berlin Heidelberg.
Civita, M. (2008), The Italian “combined” approach in assessing and mapping the vulnera-
bility of groundwater to contamination, in Zlatko Mikulič; Mǐo Andjelov. Proceedings of
Invited Lectures of Symposium on Groundwater Flow and Transport Modelling , Ljubljana,
Sovenia, 28-31 January 2008, MOP - Agencija RS za okolje, Ljubljana, pp. 17-28.
Civita, M., and M. De Maio (2004), Assessing and mapping groundwater vulnerability to
contamination: The Italian “combined” approach, Geofís. Int. , 43 (4), 513-532.
Daly, D., A. Dassargues, D. Drew, S. Dunne, N. Goldscheider, S. Neale, I. C. Popescu, and
F. Zwahlen (2002), Main concepts of the European approach for (karst) groundwater
vulnerability assessment and mapping, Hydrogeol J ., 10 , 340-345.
Deecke, W. (1906), Einige Beobachtungen am Sandstrande, Centralbl. fuer Mineral. Geol.
Und Palaeont., Stuttgart. pp. 721-727.
Denny, S. C., D. M., Allen and J. M. Journeay (2007), DRASTIC-Fm: A modified vulner-
ability mapping method for structurally controlled aquifers in the southern Gulf Islands,
British Columbia, Canada, Hydrogeol. J ., 15 (3), 483-493.
Doerfliger, N., P.-Y. Jeannin, and F. Zwahlehn (1999), Water vulnerability assessment in
karst environments: A new method of defining protection areas using a multi-attribute
approach and GIS tools (EPIK method), Environ. Geol ., 39 (2), 165-176.
Engel, B., K. Navulur, B. Cooper, and L. Hahn (1996), Estimating groundwater vulnerability to
nonpoint source pollution from nitrates and pesticides on a regional scale, HydroGIS96:
Application of Geographic Information Systems in Hydrology and Water Resources
Management (Proceedings of the Vienna Conference, April, 1996), IAHS Publ. 235.
Engelen, G. B. (1985), Vulnerability and restoration aspects of groundwater systems in
unconsolidated terrains in the Netherlands, Atti 18 Cong. I.A.H., pp. 64-69.
Evans, T. A., and D. R. Maidment (1995), A spatial and statistical assessment of the vul-
nerability of Texas groundwater to nitrate contamination, Center for Research in Water
Resources, Bureau of Eng. Res., Univ. of Texas at Austin, J. J. Pickle Res. Campus,
Austin, http://civil.ce.utexas.edu/centers/crwr/reports/online.html.
Faybishenko, B., C., Doughty M., Steiger J. C. S., Long T. R., Wood J. S., Jacobsen J. Lore,
and P. T. Zawislanski (2000), Conceptual model of the geometry and physics of water
flow in a fractured basalt vadose zone, Water Resources Res ., 36 (12), 3499-3520.
Faybishenko, B., P. A. Witherspoon, and J. Gale (Eds.) (2005), Dynamics of Fluids and
Transport in Fractured Rock , Geophysical Monograph Ser. 162, Am. Geophys. Union,
Washington D.C.
Fetter C. W. (2000), Applied Hydrogeology , Prentice Hall, Englewood Cliffs, N.J.
Search WWH ::




Custom Search