Biology Reference
In-Depth Information
33.
Malakauskas, S. M. and S. L. Mayo. Design, structure, and stability of a
hyperthermophilic protein variant. Nature Structural Biology , 5:470-5, 1998.
34.
Strop, P. and S. L. Mayo. Rubredoxin variant folds without irons. Journal of
the American Chemical Society , 121:2341-5, 1999.
35.
Shimaoka, M., J. M. Shifman, H. Jing, L. Takagi, S. L. Mayo and
T. A. Springer. Computational design of an intergrin I domain stabilized in
the open high affinity conformation. Nature Structural Biol ogy, 7:674-8, 2000.
36.
Bolon, D. N. and S. L. Mayo. Enzyme-like proteins by computational design.
Proceedings of the National Academy of Sciences USA , 98: 14274-9, 2001.
37.
Goldstein, R. F. Efficient rotamer elimination applied to protein side-
chains and related spin glasses. Biophysics Journal , 66:1335-40, 1994.
38.
Gordon, D. B. and S. L. Mayo. Radical performance enhancements for
combinatorial optimization algorithms based on the dead-end elimination
theorem. Journal of Computational Chemistry , 19:1505-14, 1998.
39.
Gordon, D. B., G. K. Hom, S. L. Mayo and N. A. Pierce. Exact rotamer opti-
mization for protein design. Journal of Computational Chemistry , 24:232-43,
2003.
40.
Pierce, N. A. and E. Winfree. Protein design is NP-hard. Protein Engineering ,
15:779-82, 2002.
41.
Dantas, G., B. Kuhlman, D. Callender, M. Wong and D. Baker. A large scale
test of computational protein design: folding and stability of nine com-
pletely redesigned globular proteins. Journal of Molecular Biology , 332:449-60,
2003.
42.
Tuffery, P., C. Etchebest, S. Hazout and R. Lavery. A new approach to the rapid
determination of protein side chain conformations. Journal of Biomolecular
Structure and Dynamics , 8:1267-89, 1991.
43.
Jin, W., O. Kambara, H. Sasakawa, A. Tamura and S. Takada. De novo
design of foldable proteins with smooth folding funnel: automated nega-
tive design and experimental verification. Structure , 11:581-90, 2003.
44.
Zhou, J. and J. G. Saven. Statistical theory of combinatorial libraries of
folding proteins: energetic discrimination of a target structure. Journal of
Molecular Biology , 296:281-94, 2000.
45.
Kono, H. and J. G. Saven. Statistical theory for protein combinatorial
libraries. Packing interactions, backbone flexibility, and the sequence vari-
ability of a main-chain structure. Journal of Molecular Biology , 306:607-28,
2001.
46.
Saven, J. G. Connecting statistical and optimized potentials in protein fold-
ing via a generalized foldability criterion. Journal of Chemical Physics ,
118:6133-6, 2003.
47.
Park, S., X. Yang and J. G. Saven. Advances in computational protein
design. Current Opinion in Structural Biology , 14:487-94, 2004.
48.
Hecht, M. H., A. Das, A. Go, L. H. Bradley and Y. Wei. De novo proteins
from designed combinatorial libraries. Protein Science , 13:1711-23, 2004.
49.
Dahiyat, B. I. and S. L. Mayo. De novo protein design: fully automated
sequence selection. Science , 278:82-7, 1997.
50.
Kuhlman, B., G. Dantae, G. C. Ireton, G. Verani, B. Stoddard and D. Baker.
Design of a novel globular protein fold with atomic-level accuracy. Science ,
302:1364-8, 2003.
Search WWH ::




Custom Search