Biology Reference
In-Depth Information
differentiation signaling. Proceedings of the National Academy of Sciences
USA , 101(9):2900-5, 2004.
59.
Venable, J., M. Q. Dong, J. Wohlschlegel, et al. Automated approach for
quantitative analysis of complex peptide mixtures from tandem mass
spectra, Nature Methods , 1(1):39-45, 2004.
60.
MacCoss, M. J., C. C. Wu, H. Liu, et al. A correlation algorithm for the auto-
mated quantitative analysis of shotgun proteomics data. Analytical
Chemistry , 75(24):6912-21, 2003.
61.
Radulovic D., Jelveh S., Ryu S., et al. Informatics platform for global pro-
teomic profiling and biomarker discovery using liquid chromatography-
tandem mass spectrometry. Molecular and Cellular Proteomics , 3(10):984-97,
2004.
62.
Kalkum, M., G. J. Lyon and B. T. Chait. Detection of secreted peptides by
using hypothesis-driven multistage mass spectrometry. Proceedings of the
National Academy of Sciences USA , 100(5):2795-800, 2003.
63.
Chang, E. J., V. Archambault, D. T. McLachlin, et al. Analysis of protein
phosphorylation by hypothesis-driven multiple-stage mass spectrometry.
Analytical Chemistry , 76(15):4472-83, 2004.
64.
Graber, A., P. S. Juhasz, N. Khainovski, et al. Result-driven strategies for
protein identification and quantitation—a way to optimize experimental
design and derive reliable results. Proteomics , 4(2):474-89, 2004.
65.
Zhu, H., M. Bilgin and M. Snyder. Proteomics. Annual Review of
Biochemistry , 72:783-812, 2003.
66.
Keller, A., A. I. Nesvizhskii, E. Kolker, et al. Empirical statistical model to
estimate the accuracy of peptide identifications made by MS/MS and
database search. Analytical Chemistry , 74(20):5383-92, 2002.
67.
Sadygov, R. G. and J. R. Yates III. A hypergeometric probability model for
protein identification and validation using tandem mass spectral data and
protein sequence databases. Analytical Chemistry , 75(15):3792-8, 2003.
68.
Sadygov, R. G., H. Liu and J. R. Yates III. Statistical models for protein
validation using tandem mass spectral data and protein amino acid
sequence databases. Analytical Chemistry , 76(6):1664-71, 2004.
69.
Warnock, D. E., E. Fahy and S. W. Taylor. Identification of protein associa-
tions in organelles, using mass spectrometry-based proteomics. Mass
Spectrometry Reviews , 23(4):259-80, 2004.
70.
Wu, C. C. and J. R. Yates III. The application of mass spectrometry to mem-
brane proteomics. Nature Biotechnology , 21(3):262-7, 2003.
71.
Hazbun, T. R., L. Malmstrom, S. Anderson, et al. Assigning function to
yeast proteins by integration of technologies. Molecular Cell , 12(6):1353-65,
2003.
72.
Prokisch, H., C. Scharfe, D. G. Camp II, et al. Integrative analysis of the
mitochondrial proteome in yeast. PLoS Biology , 2(6):795-804, 2004.
73.
Gene Ontology Consortium. The Gene Ontology (GO) database and infor-
matics resource. Nucleic Acids Research , 32(Database issue):D258-61, 2004.
74.
Shiio, Y., S. Donohoe, E. C. Yi, et al. Quantitative proteomic analysis of Myc
oncoprotein function. EMBO Journal , 21(19):5088-96, 2002.
75.
Yan, W., H. Lee, E. C. Yi, et al. System-based proteomic analysis of the
interferon response in human liver cells. Genome Biology , 5(8):R54, 2004.
Search WWH ::




Custom Search