Biology Reference
In-Depth Information
32.
Rice, J. J., M. S. Jafri and R. L. Winslow. Modeling short-term interval-force
relations in cardiac muscle. American Journal of Physiology , 278:H913, 2000.
33.
Bers, D. M. Cardiac excitation-contraction coupling. Nature , 415(6868):
198-205, 2002.
34.
Wier, W. G. and D. T. Yue. Intracellular calcium transients underlying the
short-term force-interval relationship in ferret ventricular myocardium.
Journal of Physiology, 376:507-30, 1986.
35.
Wier, W. G., et al. Local control of excitation-contraction coupling in rat
heart cells. Journal of Physiology, 474(3):463-71, 1994.
36.
Bers, D. M. and E. Perez-Reyes. Ca channels in cardiac myocytes: structure
and function in Ca influx and intracellular Ca release. Cardiovascular
Research, 42(2):339-60, 1999.
37.
Peterson, B., et al. Calmodulin is the Ca 2+ sensor for Ca 2+ -dependent
inactivation of L-type calcium channels. Neuron , 22:549-58, 1999.
38.
Linz, K. W. and R. Meyer. Control of L-type calcium current during the
action potential of guinea-pig ventricular myocytes. Journal of Physiology
( London ), 513(Pt 2):425-42, 1998.
39.
Stern, M. Theory of excitation-contraction coupling in cardiac muscle.
Biophysical Journal , 63:497-517, 1992.
40.
Bers, D. M. Excitation Contraction Coupling and Cardiac Contractile Force . Series
in Cardiovascular Medicine, Vol. 122. Kluwer Academic Press, Boston, 1993.
41.
Sham, J. S. K. Ca 2+ release-induced inactivation of Ca 2+ current in rat ven-
tricular myocytes: evidence for local Ca 2+
signalling. Journal of Physiology ,
500(2):285-95, 1997.
42.
Franzini-Armstrong, C., F. Protasi and V. Ramesh. Shape, size, and distri-
bution of Ca 2+ release units and couplons in skeletal and cardiac muscles.
Biophysical Journal, 77(3):1528-39, 1999.
43.
Greenstein, J. and R. L. Winslow. An integrative model of the cardiac
ventricular myocyte incorporating local control of Ca 2+ release. Biophysical
Journal, 83:2918-45, 2002.
44.
Cheng, H., W. J. Lederer and M. B. Cannell. Calcium sparks: elementary
events underlying excitation-contraction coupling in heart muscle. Science ,
262:740-44, 1993.
45.
Wang, S. Q., et al. Ca 2+ signalling between single L-type Ca 2+ channels and
ryanodine receptors in heart cells. Nature , 410(6828):592-6, 2001.
46.
Rohr, S. and B. M. Salzberg. Characterization of impulse propagation at the
microscopic level across geometrically defined expansions of excitable
tissue: multiple site optical recording of transmembrane voltage (MSORTV)
in patterned growth heart cell cultures. Journal of General Physiology, 104(2):
287-309, 1994.
47.
Rohr, S., A. G. Kleber and J. P. Kucera. Optical recording of impulse
propagation in designer cultures. Cardiac tissue architectures inducing
ultra-slow conduction. Trends in Cardiovascular Medicine, 9(7):173-9, 1999.
48.
Kucera, J. P., A. G. Kleber and S. Rohr. Slow conduction in cardiac tissue.
II. Effects of branching tissue geometry. Circulation Research, 83(8):795-805,
1998.
49.
Franzone, P., L. Guerri and S. Rovida. Wavefront propagation in an activation
model of the anisotropic cardiac tissue: asymptotic analysis and numerical
simulations. Journal of Mathematical Biology, 28(2):121-76, 1990.
Search WWH ::




Custom Search