Biology Reference
In-Depth Information
65.
Burgard, A. P., S. Vaidyaraman and C. D. Maranas. Minimal reaction sets
for Escherichia coli metabolism under different growth requirements and
uptake environments . Biotechnology Progress , 17(5):791-7, 2001.
66.
Giaever, G., et al. Functional profiling of the Saccharomyces cerevisiae
genome . Nature , 418(6896):387-91, 2002.
67.
Kamath, R. S., et al. Systematic functional analysis of the Caenorhabditis
elegans genome using RNAi . Nature , 421(6920):231-7, 2003.
68.
Papp, B., C. Pal and L. D. Hurst. Metabolic network analysis of the causes and
evolution of enzyme dispensability in yeast . Nature , 429(6992):661-4, 2004.
69.
Hartwell, L. H., et al. From molecular to modular cell biology . Nature ,
402(6761 Suppl):C47-52, 1999.
70.
Papin, J. A., et al. Metabolic pathways in the post-genome era . Trends in
Biochemical Sciences , 28(5):250-8, 2003.
71.
Carlson, R., D. Fell and F. Srienc. Metabolic pathway analysis of a
recombinant yeast for rational strain development .
Biotechnology and
Bioengineering , 79(2):121-34, 2002.
72.
Alper, H., et al. Identifying gene targets for the metabolic engineering of
lycopene biosynthesis in Escherichia coli. Metabolic Engineering , 7(3):155-64,
2005.
73.
Alper, H., K. Miyaoku and G. Stephanopoulos. Construction of lycopene-
overproducing E. coli strains by combining systematic and combinatorial
gene knockout targets . Nature Biotechnology , 23(5):612-16, 2005.
74.
Burgard, A. P., P. Pharkya and C. D. Maranas. OptKnock: a bilevel
programming framework for identifying gene knockout strategies for
microbial strain optimization .
Biotechnology and Bioengineering , 84(6):
647-57, 2003.
75.
Pharkya, P., A. P. Burgard and C. D. Maranas. OptStrain: a computational
framework for redesign of microbial production systems . Genome Research ,
14(11):2367-76, 2004.
76.
Pharkya, P., A. P. Burgard and C. D. Maranas. Exploring the overproduc-
tion of amino acids using the bilevel optimization framework OptKnock .
Biotechnology and Bioengineering , 84(7):887-99, 2003.
77.
Babu, M. M., et al. Structure and evolution of transcriptional regulatory
networks . Current Opinion in Structural Biology , 14(3):283-91, 2004.
78.
Salgado, H., et al. RegulonDB (version 3.2): transcriptional regulation and
operon organization in Escherichia coli K-12 .
Nucleic Acids Research ,
29(1):72-4, 2001.
79.
Matys, V., et al. TRANSFAC: transcriptional regulation, from patterns to
profiles . Nucleic Acids Research , 31(1):374-8, 2003.
80.
Shen-Orr, S. S., et al. Network motifs in the transcriptional regulation
network of Escherichia coli. Nature Genetics , 31(1):64-8, 2002.
81.
Holloway, A. J., et al. Options available from start to finish for obtaining
data from DNA microarrays II . Nature Genetics , 32(Suppl):481-9, 2002.
82.
Quackenbush, J. Microarray data normalization and transformation .
Nature Genetics , 32(Suppl):496-501, 2002.
83.
Churchill, G. A. Fundamentals of experimental design for cDNA microar-
rays . Nature Genetics , 32(Suppl):490-5, 2002.
84.
Ihmels, J., et al. Revealing modular organization in the yeast transcriptional
network . Nature Genetics , 22:22, 2002.
Search WWH ::




Custom Search