Chemistry Reference
In-Depth Information
6. Ranjbartoreh Ali Reza, & Wang Guoxiu. (2010). Molecular Dynamic Investigation
of Mechanical Properties of Armchair and Zigzag Double-Walled Carbonnanotubes
Under Various Loading Conditions. Phys. Lett. A , 374, 969-974.
7. Sears, A. & Batra, R. C. (2004). Macroscopic Properties of Carbon Nanotubes from
Molecular-Mechanics Simulations . Phys. Rev. B , 69, 235406.
8. Wang, Q. (2004). Effective In-Plane Stiffness and Bending Rigidity of Armchair and
Zigzag Carbon Nanotubes. Int. J. Solids Struct., 41, 5451-5461.
9. Kalamkarov, A. L., Georgiades, A. V., Rokkam, S. K., Veedu, V. P. & Ghasemi-Nejhad,
M. N. (2006). Analytical and Numerical Techniques to Predict Carbon Nanotubes
Properties. Int. J. Solids Struct., 43, 6832-6854.
10. Gupta, S. S. & Batra, R. C. (2008). Continuum Structures Equivalent in Normal Mode-
vibrations to Single-Walled Carbon Nanotubes. Comput. Mater. Sci., 43, 715-723.
11. Giannopoulos, G. I., Kakavas, P. A. & Anifantis, N. K. (2008). Evaluation of the Effec-
tive Mechanical Properties of Single-Walled Carbon Nanotubes Using a Spring Based
Finite Element Approach. Comput. Mater. Sci., 41(4), 561-569.
12. Papanikos, P., Nikolopoulos, D. D. & Tserpes, K. I. (2008). Equivalent Beams for
Carbonnanotubes. Comput. Mater. Sci., 43, 345-352.
13. Li Chunyu, & Chou Tsu-Wei. (2003). Elastic Moduli of Multi-Walled Carbon Nano-
tubes and the Effect of Van Der Waals Forces. Compos. Sci. Technol. , 63, 1517-1524.
14. Natsuki, T., Tantrakarn, K. & Endo, M. (2004). Prediction of Elastic Properties for
Single-Walled Carbon Nanotubes. Carbon, 42, 39-45.
15. Natsuki Toshiaki, & Endo Morinobu. (2004). Stress Simulation of Carbon Nanotubes
in Tension and Compression . Carbon , 42, 2147-2151.
16. Xiao, J. R., Gama, B. A. & Gillespie, Jr J. W. (2005). An Analytical Molecular Struc-
tural Mechanics Model for the Mechanical Properties of Carbon Nanotubes. Int. J.
Solids Struct., 42, 3075-3092.
17. Tserpes, K. I. & Papanikos, P. (2005). Finite Element Modeling of Single-Walled Car-
bon Nanotubes. Composites: Part B , 36, 468-477.
18. Jalalahmadi, B. & Naghdabadi, R. (2007). Finite Element Modeling of Single-Walled
Carbon Nanotubes with Introducing a New Wall Thickness. J. Phys.: Conf. Ser. , 61,
497-502.
19. Meo, M. & Rossi, M. (2006). Prediction of Young's Modulus of Single Wall Carbon
Nanotubes by Molecularmechanics Based Finite Element Modeling. Compos. Sci.
Technol., 66, 1597-1605.
20. PourAkbar Saffar Kaveh, JamilPour Nima, Najafi Ahmad Raeisi, RouhiGholamreza,
Arshi Ahmad Reza, Fereidoon Abdolhossein, & et al. (2008). A Finite Element Model
for Estimating Young's Modulus of Carbon Nanotube Reinforced Composites Incor-
porating Elastic Cross-links. World Acad Sci.Eng Technol , 47.
21. Cheng Hsien-Chie, Liu Yang-Lun, Hsu Yu-Chen, & Chen Wen-Hwa. (2009). Atomis-
tic-Continuum Modeling for Mechanical Properties of Single-Walled Carbon Nano-
tubes . Int. J. Solids Struct., 46, 1695-1704.
22. Ávila Antonio Ferreira, & Lacerda Guilherme Silveira Rachid. (2008). Molecular Me-
chanics Applied to Single-Walled Carbon Nanotubes. Mater Res , 11(3), 325-333.
23. Wernik Jacob, M. & Meguid Shaker, A. (2010). Atomistic-Based Continuum Model-
ing of the Nonlinear Behavior of Carbon Nanotubes. Acta Mech., 212, 167-79
Search WWH ::




Custom Search