Biomedical Engineering Reference
In-Depth Information
50. J.R. Monck, A.F. Oberhauser, T.J. Keating, and J.M. Fernandez. Thin-section ratiometric Ca2+
images obtained by optical sectioning of fura-2 loaded mast cells. J. Cell Biol. , 116(3):745-
759, 1992.
51. N. Moreno, S. Bougourd, J. Haseloff, and J. A. Feij o. Imaging Plant Cells. In J. B. Pawley,
editor, Handbook of Biological Confocal Microscopy , chapter 44, pages 769-787. Springer,
3 rd edition, 2006.
52. P. Pankajakshan. Blind Deconvolution for Confocal Laser Scanning Microscopy . PhD thesis,
Universite de Nice-Sophia Antipolis, December 2009.
53. P. Pankajakshan, L. Blanc-Feraud, Z. Kam, and J. Zerubia. Point-spread function retrieval
in fluorescence microscopy. In Proc. IEEE International Symposium on Biomedical Imaging ,
pages 1095-1098, Boston, USA, July 2009.
54. P. Pankajakshan, B. Zhang, L. Blanc-Feraud, Z. Kam, J.-C. Olivo-Marin, and J. Zerubia. Blind
deconvolution for thin-layered confocal imaging. Appl. Opt. , 48(22):4437-4448, 2009.
55. G.H. Patterson. Fluorescence microscopy below the diffraction limit. Seminars in cell &
developmental biology , 20(8):886-893, 2009. Imaging in Cell and Developmental Biology;
Planar Cell Polarity.
56. J.B. Pawley. Fundamental limits in confocal microscopy. In J. B. Pawley, editor, Handbook of
Biological Confocal Microscopy , chapter 2, pages 20-42. Springer, 3 rd edition, 2006.
57. J.B. Pawley, editor. Handbook of Biological Confocal Microscopy . Springer, 3 rd edition, 2006.
58. J.B. Pawley. Points, pixels, and gray levels: digitizing image data. In J. B. Pawley, editor,
Handbook of Biological Confocal Microscopy , chapter 4, pages 59-79. Springer, 3 rd edition,
2006.
59. M. Platani, I. Goldberg, J.R. Swedlow, and A.I. Lamond. In Vivo analysis of Cajal body
movement, separation and joining in live human cells. J.Cell.Biol. , 151:1561-1574, 2000.
60. C. Preza, M.I. Miller, L.J. Thomas Jr., and J.G. McNally. Regularized linear method for
reconstruction of three-dimensional microscopic objects from optical sections. J. Opt. Soc.
Am. A , 9(2):219-228, 1992.
61. E.H. Ratzlaff and A. Grinvald. A tandem-lens epifluorescence macroscope: hundred-fold
brightness advantage for wide-field imaging. J Neurosci. Methods. , 36:127-137, 1991.
62. W.H. Richardson. Bayesian-based iterative method of image restoration. J. Opt. Soc. Am. A ,
62(1):55-59, January 1972.
63. L.I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal algorithms.
Phys. D. , 60:259-268, 1992.
64. P. Sarder and A. Nehorai. Deconvolution methods for 3-D fluorescence microscopy images.
IEEE Signal Process. Mag. , 23(3):32-45, May 2006.
65. B.A. Scalettar, J.R. Sweldow, J.W. Sedat, and D.A. Agard. Dispersion, aberration and
deconvolution in multi-wavelength fluorescence images. J. Microsc. , 182:50-60, 1996.
66. L. Schermelleh, R. Heintzmann, and H. Leonhardt. A guide to super-resolution fluorescence
microscopy. J. Cell Biol. , 190:165-175, 2010.
67. F. Sedarat, E. Lin, E.D.W. Moore, and G. F.Tibbits. Deconvolution of confocal images of
dihydropyridine and ryanodine receptors in developing cardiomyocytes. J. Appl. Physiol. ,
97:1098-1103, 2004.
68. J.W. Shaevitz and D.A. Fletcher. Enhanced three-dimensional deconvolution microscopy using
a measured depth-varying point-spread function. J. Opt. Soc. Am. A , 24(9):2622-2627, 2007.
69. S.L. Shaw. Imaging the live plant cell. The Plant Journal , 45(4):573-598, 2006.
70. C.J.R. Sheppard. Depth of field in optical microscopy. J. Microsc. , 149:73-75, 1988.
71. L. Sherman, J.Y. Ye, O. Albert, and T.B. Norris. Adaptive correction of depth-induced
aberrations in multiphoton scanning microscopy using a deformable mirror. J. Microsc. ,
206(1):65-71, 2002.
72. J.B. Sibarita. Deconvolution microscopy. Advances in Biochemical Engineering and Biotech-
nology , 92:201-243, 2005.
73. J.-L. Starck and A. Bijaoui. Filtering and deconvolution by the wavelet transform. Signal
Process. , 35(3):195-211, 1994.
Search WWH ::




Custom Search